
HisSI3 08 DETAILED DESIGN AND IMPLEMIENTATION OF Ai
MULTIPROGRAIMMING OPERATING SYSTEM--U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI

UN SSFEDRK MILLER DEC ST AFIT/GCS/EE/03D 14 F/O 9/ NL

02.04

1.25 1111. =

MICRCOP REOU 32 ET HR
-iTW~ BUEU FSANA6-L6

- %
- V'%

IIII~- 36%
%

%M fl~
Zs A.. 2

IHII~ 11.

IIO

DETAILED DESIGN AND IMPLEMENTATION OF A
MULTIPROGRAMMING OPERATING SYSTEM FOR

* SIXTEEN-BIT MICROPROCESSORS

THESIS

*AFIT/GCS/EE/83D-14 Ronald K. Miller

2Lt USAF

iD 7

kELECTESE [2 2 1984 1

DEPARTMENT OF THE AIR FORCE

CL. AIR UNIVERSITY (ATC)D

CAIR FORCE INSTITUTE OF TECHNOLOGY
LAJ
rn-

.l.

,* Hi i* .f::..;d. \v.dA -~.- '

AFIT/GCS/EE/83D-14

Accession For

NiTIS GRA&I
DTIC TAB
Unannounced (
Justiticatior

Distribution/_
Availability Codes

Avail and/or
Dist Special

DETAILED DESIGN AND IMPLEMENTATION OF A
N MULTIPROGRAMMING OPERATING SYSTEM FOR

SIXTEEN-BIT MICROPROCESSORS

THESIS

AFIT/GCS/EE/83D-14 Ronald K. Miller
2Lt USAF

Approved for public release; distribution unlimited.

F 2 2 1934

N.*

AFIT/GCS/EE/83D-14

DETAILED DESIGN AND IMPLEMENTATION OF A

MULTIPROGRAMMING OPERATING SYSTEM FOR

SIXTEEN-BIT MICROPROCESSORS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Ronald K. Miller, B.S.

2Lt USAF

Graduate Computer Systems

December 1983

Approved for public release; distribution unlimited.

Preface

This thesis presents the detailed design and

implementation of a multiprogramming operating system for

sixteen-bit microprocessors. The detailed design is based on

the works of Robert J. Yusko, Mitchell S. Ross, and Douglas

S. Huneycutt, Sr. I would like to thank these men for their

efforts which made this effort possible.

I would like to thank my faculty advisor, Dr. Gary B.

Lamont, for his advice that was given throughout this effort.

I would like to express my appreciation to Lt. Paul E.

Cruser for his cooperation and help in this effort. I would

like to thank my parents Ronald W. and Margaret L. Miller,

for their support and love. I would also like to thank my

In-Laws Robert J. and Katherina A. Waldrop, for those

enjoyable breaks from school and their always supportive

love.

Finally, I would like to thank my wife Linda, for just

being herself, and helping me through those rough times. I'm

sure who will be glad to have her "Old" husband back.

ii

Table of Contents

Preface ... ii

Table of Contents iii

List of Figures vi

Abstract .. vii

I. Scope of Project I-i

Introduction o........... I-i

Review of Previous Requirements 1-4
Objectives 1-6
Approach 1-6
Thesis Outline 1-7

II. Requirements .I...... I- 1

Introduction............... II- 1
Local Requirements 11- 3
Air Force Requirements I- 4

Capabilities II- 4

Multiuser Support 11-5
User Interface 11- 7
Inter-user Communications 11- 7
Memory and File Management II- 8
Error Handling and Recovery ... II- 9
Device Support II-10

Design Approach 11-12
Implementation .I. 11-12
Microprocessor Considerations 11-14

SSummary 11-15

III. Operating System's Design I...............I- 1

Introduction I1- 1
Bootstrap I1- 2
Overall System Design 111- 4

Initialize Data Base 111-6
Polling and Parsing of Command Line III- 6
Determine Command Type 111- 8

Validating Command II-11
Execution of Valid Command III-11

System Command III-12
Log-in User 111-14
Log-out User 111-16
Help Command 111-16
User Command 111-18

Evaluation of AMOS Design 111-20
Summary 111-22

IV. Memory Management of AMOS IV- 1

Introduction IV- 1
AMOS Memory Allocation IV- 2

Status of Memory Partitions on AMOS IV- 3
Allocation Policy Used on AMOS IV- 3
Allocation on AMOS IV- 4
Deallocation on AMOS IV- 4

Design of AMOS's Memory Management IV- 5

Allocating the Job to Main Memory IV- 5
Deallocating the Job from Main Memory IV- 7

Implementation of AMOS's Memory Management . IV- 7

Get File o............ IV- 9
Check Space IV-10
Read File ... o....................... IV-12
Deallocate Space IV-13

Summary IV-13

V. Secondary Memory Specifications V-1

Introduction V-1
Directory Format V-1
Sector Format V-4

.Summary v-5

VI. Implementation of the Operating Sysytem VI- 1

Introduction VI- 1Main o.....o...........o................ VI- 2
Initialize Data Base VI- 2
Parse Command Line VI- 4
Poll VI- 6
Determine Valid Command VI- 8

Log-in User VI- 9,Log-out User ... o.................o......... VI-11
Help User VI-12

..... '.. ' - , ' . I %. , ." ' '. , % %, -"

System Change VI-14
Execute User Command..................... VI-16

Validate User Command VI-17
Execute Command VI-18
Build Message VI-19
Error Handling VI-21
Static Analysis VI-22
Summary VI-25

VII. Conclusions and Recommendations VII-I

Conclusion VII-1
Recommendations VII-3

Testing 0..0 VII-3
Assembly Coded Routines VII-4
Source Code Transfer VII-5
Operational Z8000 System VII-6

Bibliography BIB-1

Appendix A: Initial Hardware Configuration A-I

Appendix B: AMOS Structure Charts 1...o B-i

Appendix C: Process Descriptions for AMOS C-I

Appendix D: Data Dictionary for AMOS D-1

Appendix E: AMOS Source Code E-1

Appendix F: AMOS Users' Guide F-1

Appendix G: Hierarchical Structure of Design G-i
i Vitao o.. Vita-1

V.,

..U AL JL. I I IL! -- ': | i t . .. ,.. .- ,.,,:. ..i ...,.,.i .. •

List of Figures

Figure Page

I1- 1 Software Life Cycle-Waterfall II- 2
11i- 1 Execute Bootstrap Program II- 3
III- 2 Execute AMOS III- 5
111- 3 Initialize Data Base 1I1-7
111- 4 Parse Command Line....................... 111- 9
111- 5 Determine Valid Command.................. III-10
III- 6 System Change 111........ III-13
III- 7 Log-in User 111-15
III- 8 Log-out User 111-17
III- 9 Help User 111-19
III-10 Execute User Command..................... 111-21IV- 1 Get File IV- 6
IV- 2 Run Process * IV- 8
V- 1 Directory Byte Description V-1
V- 2 Directory Entry Byte Description V-2
V- 3 Sector Byte Description V-4

vi

Abstract - . .

A multiprogramming operating system, designated'(AFIT)

Multiprogramming Operating System (AMOS) , for the AFIT

Digital Engineering Laboratory was designed at the

detailed level and fully implemented, except for the

assembly language routines. The requirements were

developed in the works of Yusko, Ross, and Huneycutt.-

This thesis effort was done in conjunction with the -'

effort of Lt. Paul E. Cruser. This effort covers the

detailed design and implementation of the overall system,

the detailed design and implementation of the operating

system memory manager, and the specifications for the

secondary storage.

'vii

• 5;\

-"V

"" vii

1j -

-- I. Scope of Project

'

_..

Introduction

The purpose of this project is to continue the design

and implementation of a multiprocessing operating system

for sixteen-bit microcomputers. " This operating system

will be referred to as the AFIT Multiproramming Operating

System (AMOS) (Ref. 1:1). The purpose of this chapter is

to give a brief overview of operating systems, to outline

SW requirements for AMOS that have been defined in the

previous efforts by Ross (Ref. 4), Yusko (Ref. 5), and

Huneycutt (Ref. 1), to outline the objectives of this

* project, and to present the approach to obtain the stated

objectives.

One definition of an operating system (0/S) is "an

* organized collection of systems or programs that acts as

an interface between machine hardware and users, providing

users with a set of facilities to simplify the design,

coding, debugging, and maintenance of programs while, at

the same time, controlling the allocation of resources to

assure efficient operation." (Ref. 2:1,2) In other words,

the O/S is a large software management program that acts

as an interface between the user and the computer system.

.'

The computer system could include the hardware,

application programs, and control.

Historical

In the first generation of vacuum-tube hardware, the

procedure for the operating system, which nothing more

than a program loader, was: a loade reads in an

assembler; the assembler assembles into abs ate code user

source programs and library routines; the assembled code

is written on tape or cards, and a loader is again used to

read these into main storage; the absolute code of the

program is then executed (Ref. 2:7). This meant that

there was only one job executed at a time.

In the second generation of transistorized hardware,

the operating system was developed into a sequential batch

processing operating system. The operating system made

use of new data channels, interrupts and used auxiliary

storage efficiently (Ref. 2:9). This type of operating

system still only allows one job to be executed at a time.

*' Along with the integrated circuitry of the third

generation came the multiprogramming and time-sharing

methods that could be used to make an operating system

more efficient (Ref. 2:12). Multiprogramming is based on

the concept of concurrency; that is, more than one program

* can be executing within the computer system at the same

1-2

.. * *.*5**"** * . . . ; -

66b 4 ' "- ;"V:.

time (Ref. 3:29). Since only one central processor is

used in this type of environment, only a single program

may be executing at a given instant in the central

processing unit (CPU), but to the users it seems as if all

the programs are executing at the same time. This is done

with the use of input/output processing. Multiprogramming

systems alternate the programs' usage of the CPU according

to some policy. The operating system determines which

.4 program is ready for execution and then allocates the CPU

for the program.

*Time-sharing systems are an attempt to give each user

-' a personal computer while efficiently utilizing the

0 resources of a relatively expenEive machine. All user

interactions on a time-sharing system are done through

on-line terminals. Two requirements for a time-sharing

5 isystem are 1) the response time has to be maintained at

the appropriate level of the human attention span and 2)

the appearance of unrestricted access is presented to the

user (Ref. 3:29).

The concepts of multiprogramming and time-sharing are

complementary. Most minicomputer systems couple

multiprogramming capabilities with an interactive

time-sharing capability (Ref. 3:30). An example of such

an operating system is UNIX (Ref. 20).

There are many types of operating systems on the

market today for all sizes of computers. They range from

1-34.

& . " + .' °o . -% -. ,. *...-. . .. -.S m.

4.

4o.

the simple batch to the complex network. These operating

systems are more complex than the original ones and will

become more complex in the future when greater needs are

pressed on the operating system.

Review of Previous Requirements

4. This thesis effort is a follow-on to three previous

thesis efforts that were under the direction of Professor

Gary B. Lamont. Ross (Ref. 4) and Yusko (Ref. 5) were

concerned with the upper level design of the operating

system. Huneycutt (Ref. 1) was concerned with design and

*implementation of the file management of the operating

system.

The previous requirements (given by Ross, Yusko, and

Huneycutt) are followed in the final design and initial

implementation of the operating system. Eight

requirements for AMOS that are the goals for the initial

implementation are:

1. Multiuser support for at least four concurrent

users.

2. Friendly user interface.

3. Interuser communication.

4. Fair allocation of system resources.

. '.. 5. Meaningful error diagnostics.

1-44 <-.4-..~~444* ~ ~ 4~~'

.i *,-? 6. Recovery routine.

7. Minimal device/user utility support (Ref 1:11).

8. Provide a general purpose configurable O/S with

full documentation to aid in teaching of O/S

courses.

Although the Intel 8086 microprocessor was initially

chosen (Ref. 4,5), the Z8000 was selected (Ref. 1) because

it offered the desired support that was not provided by

the 8080. The Z8000 is also capable of discerning between

system and user tasks and can control the operations being

performed for the users (Ref. 1:16). The choice of the

Z8000 will be covered more thoroughly in the requirements

chapter (Chapter 2).

The implementation of AMOS will be written mostly in

the C language. Hardware dependent routines will be

written in the Z8000 Assembly language. The reasons for

using C are:

1. It is a structured language.

2. There is C source code for an existing operating

system (UNIX) (Ref. 20) that is readily available

to research.

3. The C language is less restrictive than other

high-level languages that have an available

: .: compiler.

1-5

.**~ .~ ~ .c~ . :--- ~ ~ -*-. ~ : * :. ...

JI.

The modules that are to be written in assembly

language will have to be rewritten in the new host

computer's assembly language.

Objectives

The objective of this project is to design and

implement a multiprogramming operating system for a

sixteen-bit microprocessor. Top-down methodology is the

main tool for design and implementation. The

implementation of AMOS will be done in the C language, as

stated earlier, and will avoid hardware configuration

dependency (enhance portability). The only hardware

-dependent modules are those written in assembly language.

Approach

The project started with a literature search and review

to obtain information on operating systems and their

development. The requirements, for the most part are

taken from References 1, 4, and 5. The structure of AMOS

will be modular to facilitate testing, maintenance, and

- portability.

AMOS will be initially implemented on the Multibus

" Z8000 system (using the Z8002 microprocessor) from

1-6

d V:. ,, <<, . -,. **~** **?. . . . *.. ? . .. *. : -?.,

Advanced Micro Devices (AMD). The Z8002 system contains a

non-seqmented CPU card, a multi-port serial I/O card, 128K

of main memory, a floppy disk controller, a clock/timer

card, and a mainframe. This is the initial hardware that

. is present in the lab (Room 67, Building 640). More

details on the Z8002 is contained in Appendix A.

Thesis Outline

The rest of the chapters will cover the following

subjects:

1. Requirements for AMOS

2. Design of AMOS

3. Design and Implementation of AMOS Memory Manager

4. Specifications of Secondary Memory

5. Implementation of AMOS

6. Conclusion and Recommendations

Requirements for AMOS, Design of AMOS, and

Implementation of AMOS are duplicated in Lt. Paul E.

Cruser's thesis document. All of the appendices are also

4 duplicated.

1-7

II. Requirements

Introduction

The development cycle of a software project begins

with the requirements analysis (Ref 9:198). The broad

requirements for this project's operating system can be

stated in one sentence. The operating system is to be a

multiprogramming operating system for a sixteen-bit

microprocessor computer system that is easily changed and

is machine dependent only at the lowest levels. The next

phases (Ref. 9: 199) of the software development cycle

are:

1. Specifications/Requirements

2. Design

a. Structural design

b. Detailed design (algorithms)

3. Implementation/Coding

4. Testing

5. Operation/Maintenance

The steps are shown graphically in Figure II-1 (Ref.

11: 13). Although the testing is listed as the fourth

phase, it should be done throughout the development cycle.

iII-

.A ... A... A ',-

Systems
Analysis

Structural
and Detailed
Design

Implement-
ation/Coding

STesting

operation/

Maintenance

i Figure II-1 Software Life Cycle-Waterfall

II1-2

0 , ' .° : I . " " .: , --. -- ' ' . , % i -, , ' ~ i -' . ' - _ - , - ' " ." - i - " - ' ,

In this chapter, the requirements for this project's

operating system will be explained with most of the

specifications included. The requirements phase defines an

acceptable solution to the problem. During the

requirements phase, the designer must understand exactly

what the user desires from the system. If the

requirements are incorrect and an error is not detected

until later in the design phase or coding phase, then the

correction of the error can take more time and effort.

This is why the requirements phase is one of the most

valuable of the developmental phases of any software

project, although all of them need to work together to

produce the end result.

Local Requirements

Other than fulfilling the requirements for some

students' project, this operating system can be used in

various ways. It could be used to teach courses in the

areas of software engineering, operating systems, computer

architecture, and computer languages. This operating

system could be used on different computers for different

courses and could possibly provide more computer services

that would be less costly than an additional minicomputer

(for example, the VAX 11/780 on the first floor of

Building 640). Of course, this would be conditional on

11-3

- av; C'. - Jr W - . *. -, .- V ..- %I.

.".--". keeping the cost of the computer system under $10,000

(Ref. 5: 11).

Air Force Requirements

As was stated (Ref. 1: 10), the Microcomputer

Technology Branch of the Air Force Data Systems Design

Center at Gunter AFB, Alabama was created to supervise the

production and acquisition of microcomputer software.

This project can be used to serve two beneficial roles:

1) it can give insight to Air Force Acquisition personnel

to correctly specify the required software for

microcomputers (Ref. 1: 10) and 2) it can provide a fully

documented operating system that can be developed into a

useful tool which the Air Force, as well as AFIT, would be

able to utilize. This documentation consists of structure

charts, process definitions, data flows, source code

comments, and a users' guide which are located in

Appendices B, C, D, E, and F respectively.

Capabilities

The required capabilities for the operating system

have already been developed (Ref. 1, 4, 5). They are used

as the end goals for the completed and running operating

system and are listed as follows:

11-4
' : "' '''' " '." ."" ''"" "" """V ""* ""."""'. '

-7 7 77 . 7.7 7,S

4 1. Multiuser Support

41

2. "Friendly" User Interface

,4

-~3. Communications between Users

4. Resource Management System
-,

5. Meaningful Error Diagnostics

and Recovery Procedures

+ 6. Device and User Support

These required capabilities are also considered as

the basic requirements for the design of the operating

system. Each of these will be explained in the rest of

othis chapter.

-_ Multiuser Support

One of the specifications that are given for this

operating system is that it is to be multiprogramming.

The definition given by Madnick and Donovan (Ref. 7) is "a

term given to a system that may have several processes in

'states of execution' at the same time (a process can be

in a state of execution and not be executing; that is,

some intermediate results have been computed but the

processor is not currently working on the process)" (Ref.

7: 7).

11-5

a.*. 5 * a. .

, -

IMultiprogramming is used in an environment that will

handle concurrent users (as does the VAX 11/780 that was

mentioned earlier). The first required capability,

multiuser support, will require the design of a

multiprogramming environment for the operating system.

For this operating system, the support of a minimum

of four users has been given as the multiuser requirement

for the implementation. The maximum number of concurrent

users that can use the system will depend on three

hardware constraints: 1) the number of serial and

parallel I/O ports that can be used for Cathode-Ray Tube

consoles (CRTs), 2) the memory constraints that are built

into the operating system's data base, and 3) the size of

main memory that is allotted for the users.

The design of the operating system will be for a

multiuser environment of approximately eight concurrent

users. The initial coding and implementation will be for

four concurrent users and will be easily upgradable to

five, and up to the maximum of eight, users. The

upgrading process will be discussed in detail later. The

initial implementation of four Users will be an adequate

test bed for the multiprogramming requirement by providing

various CPU and I/O bound processes which would test out

the software (Ref. 5: 11).

11-6

..

User Interface

The user interface has become an important aspect of

any operating system. It is essential to provide a

"friendly" user interface which can be utilized by users

with differing computer skills and backgrounds. The user

should be able to easily learn how to operate the system.

The "friendly" user interface of any operating system is

characterized by three qualities: 1) ease of use 2)

tolerance of user errors and 3) minimization of user error

opportunities (Ref. 6: 270-273). The operating system

will work efficiently with an experienced user and still

be able to assist a novice user in learning how to operate

the system (Ref 5:12). Documentation for the user will

greatly help facilitate the learning process.

Inter-User Communication

The inter-user communications of the operating system

can be done using a mail routine, public files, or both.

With a mail routine, one user would be able to set up a

file to send to another user, while setting a mail flag

informing the second user of mail. By using a public file

system, any user can declare a file as public so that

anyone can read, link, or list that file. The one

a. I restriction for this method is no alteration (erase,

11-7

overwrite, etc.) could be done to a public file, except by

the original user. These two, mail routine and public

files, can be combined in the system. The mail routine

can be used exclusively for messages, and the public file

system can be used for program files.

The mail routine and the public file system are

solutions for the design. The requirements for the

system's inter-user communications would be met by using

one or both of them.

AMemory and File Management

Memory and file management is concerned with four

basic functions (Ref. 7:105) :

1. Keeping track of the status of each location of

main memory.

2. Determining a policy for memory allocation.

3. Allocation technique.
- U4

4. Deallocation technique.

The status of each location of primary memory will be

either allocated or unallocated. Allocated means that the

memory location is being used for a job. Unallocated

means that the space is free for any incoming jobs.

41.
.-

II1-8

". *'J.'. % ' .4 . ' V .4' % k' V -..V' -- "' - - .-" -*- ' - . ." .- "•"-
T

. . •"-"-"

i.i

The policies for memory allocation will be influenced

greatly by the following three constraints: 1) the

maximum number of j..bs allowed on the system at a time,

*2) the desired turn-around time for average jobs (e.g.

shared program modules), and 3) the size of jobs versus

the size of main memory (i.e. can all jobs fit into the

allotted working area). A few examples of memory

allocation policies are partitioned memory, paged memory,

demand-paged memory, and segmented memory (Ref. 7: 106).

The latter two provide a virtual memory feature that will

be discussed later.

Allocation and deallocation techniques depend upon

the policy selected for memory management. If paged
memory management is selected the allocation technique

will have to place the entire job into main memory into a

series of blocks. When the job is completed the job needs

to be removed from main memory and the former allocated

area will be returned into free. The programs that are

active in memory need to have protection, which is

accomplished by the allocation technique.

Error Handling and Recovery

The operating system should have the ability to

handle and recover from system and user errors. Not only

--, should it handle and recover from the errors, it should

11-9

S"also provide informative diagnostics that would help the

user better understand the error. There are two types of

user programming errors: fatal and non-fatal. These two

types of user programming errors can be handled by

displaying error messages (the diagnostics) and returning

to the operating system's control. The user could also

* have format errors with the command language. This would

.9 simply be handled by giving the user the correct format

for that particular command as the diagnostics.

The system can be modified for more users, for a

different management routine, or for a different 16-bit

microprocessor. There should be error detection

capabilities for each of the new system modifications.

4This type of error detection would be useful for the

person(s) trying to complete the modification.

Device Support

The device support will be handled by the

Input/Output (I/O) Manager. These devices can be

., described as "the computer system's means of communicating

with the world outside of primary memory. This

communication may be with humans external to the computer

system or with other parts of the system (such as tapes,

computer cards, or disks) not directly accessible by most

of the instructions of the central processor" (Ref. 10:

4.u

4a

,h-b

,°. ° . ..*. . . o o.. 4...-- - - ..--

[.'a

169) The four requirements for the I/O Manager (Ref. 5:

15) are the following:

1. Information transferral between users and I/O

'. devices

2. Conversion of the user's view of I/O device

(virtual I/O) to physical characteristics

3. Sharing of I/O drivers

4. I/O device error recovery

There are three major techniques used for managing and

allocating I/O devices: 1) dedicated, 2) shared, and 3)

virtual (Ref. 7: 284). The third requirement would be

implemented using a shared devices technique and a virtual

-- " devices technique. The shared devices technique would

allow such devices as disks, drums, and most other Direct

Access Storage Device (DASD) to be shared concurrently by

several processes (Ref. 5: 284). Slow I/O devices (such

as teletypes, printers, and card readers) would have to

use the virtual device technique (for example, a SPOOLing

routine) in order to convert them into shared devices

(Ref. 5: 285).

, a.? - -,

Design Approach

As stated in the first chapter, the top-down approach

will be used for the most part in designing of the

operating system. The break from the top-down methodology

will be when an algorithm that is used in a lower level

can be designed and written before that level has been

reached.

- Implementing Language

In the past, operating systems were written

exclusively in assembly language (Ref. 8). The two main

reasons are: 1) a well written and optimized assembly code

is the fastest-executing code available and 2) the code

produced using assembly code is the most compact, taking
. %

up the least amount of memory (Ref. 1: 13). With the cost

of memory going down, the second reason is not as
...,'%

critical, since more memory can be purchased. With the

use of structured designing (such as the top-down

approach), the use of structured languages can be written

to follow the physical form of the design used.

In the design of the operating system, the use of a

high-level structured language will be used for the

control structures, and the assembly language of the

• *- microprocessor will be used in those areas where

11-12
-a,°'

•. 'performance needs to be optimal (such as the device

"**. drivers). Two examples that have used this type of hybrid

design are: 1) UNIX, written in the C language and 2) UCSD

Pascal, written in Pascal (Ref. 1: 14).

One of the specifications for this project's

operating system is portability. Since the bulk of the

operating system will be written in the C language, it can

be transferred and compiled easily. The assembly language

routines will need to be rewritten in the new

microprocessor's assembly language.

As stated in the first chapter, the C language was

chosen as the high-level language that would be used in

? the final implementation, with the assembly language used

for some of the machine dependent routines that cannot be

handled efficiently using the C language.

The C language is readily available at AFIT. A

cross-compiler from C to Z8000 assembly code is available

on the VAX 11/780 located in the Digital Engineering Lab.

A C compiler for the AMD Z8000 processor is being acquired

from AMD. When this compiler is received, it will be used

to compile the C portion of the operating system. A

Pascal compiler is available but C was chosen because it

is less restrictive (Ref 1: 15).

.1

*. -- II-13

*, .o. . ',. . - , ; o o o.. ** o 4q.. -. , , A * -- m 4 " 4 A oo A . -.

Microprocessor Consideration

The AMD Z8000 microprocessor was selected from an

extensive study with three other 16-bit microprocessors

(Intel 8086, Motorolla 68000, and DEC LSI-11/23). The

* S
5 LSI-11/23 was not considered for this project as a target

device (Ref 1:16).

The amount of hardware support offered by the

microprocessor was important in the selection of the

target device. The following are the desired hardware

supports that the Z8000 offers (Ref 1:17):

1. Restriction of CPU access.

2. Restriction of memory access.

3. Memory mapping and program relocation.

4. Sharing of memory.

5. Context switching support.

6. I/O interrupt support.

For CPU access restriction the Z8000 was the only one

.- [to differentiate between normal and system modes with

restriction of the use of I/O instructions, control

registers manipulation, and the HALT instruction. All the

Imicroprocessors require external circuitry to control

access to memory, but the Z8000 provides instructions for

use with the memory segmentation. When an inte:rupt is

-. 11-14

V . ..

received, the Z8000 has block move instructions for

facilitating the storage of the entire instruction set,

S..while the other microprocessors only store part of the

machine state. The Z8000 allows the interrupt vector

table to be located anywhere in memory, but all the

microprocessors react in the same way to interrupts (Ref

1: 21).

Summary

The implementing language and the microprocessor were

not requirements for the operating system. These two have

: been presented because they were previously selected for

"- initial implementation (Ref. 1).

For any system to be designed correctly, the designer

must completely understand what the user desires from the

system. A successful completion of the requirement phase

will enable the designer to provide the user with the

necessary results. Since the operating system is a

complex piece of software, the requirement phase is more

important than in less complex pieces of software. This

chapter presented the requirements for AMOS that were

defined in previous thesis efforts.

The C programming language was previously selected

(Ref 1: 22) for its clarity, power, and availability. For

-* these same resons and for the availability of UNIX C

11-15

' source code, C was selected for this effort.

The AMD Z8000 microprocessor was chosen for the

initial implementation. The Z8000 enables the operating

system to:

1. Easily handle main memory.

2. Differentiate between system and user tasks.

3. Efficiently handle interrupts.

The testing requirements for AMOS are module testing,

system testing, and acceptance testing. Module testing

includes the testing both the structure of individual

modules and the integration between modules. System

testing is the validation of the system to it's initial

objectives (Ref. 25: 232). Acceptance testing is the

validation of the system to it's user requirements (Ref.

25: 232).

.11

'..e.

77-- 77% -77- 77 . ;-

III. Operating System's Design

Introduction

The purpose of this chapter is to present the

detailed design of the AFIT Multiprogramming Operating

System (AMOS).

The detailed design of this multiprogramming

operating system was done using a top-down methodology.

When using a top-down approach, a well structured design

is possible. This top-down design approach is done by

making the upper-level modules call only lower-level

modules. This will allow easier modification and

understanding. These are two requirements that were

previously stated.

This operating system was designed with a structured

programming language in mind, such as the C language which

was selected. By using a well known and widely used

programming language for operating systems, a portable

system is obtained. The only modules that would need to

be changed would be the low-level driver routines that

will be written in assembly language. The need for this

operating system to be portable was previously stated in

the requirements chapter.

The tool used in the design of AMOS is the structure

..

IIhI-i

.. . .- -. -, .. .,.. .

.. * %4..' % -_ .*. --. , • - -. .' , . , -. - ,.. .,' " .,

.u .*...., chart. The structure chart was chosen because as the

design is refined, new modules are identified and added to

the chart (Ref. 11:60). The initial version of the

•'S structure chart is derived from the analysis tool called a

data flow diagram (DFD) (Ref. 11: 61). The initial

structure chart for AMOS was derived from the DFDs

presented by Reference 4. The DFDs were not included in

this text, because the structure charts can be presented

apart from the DFDs and still be complete in its

presentation of the operating systems structure.

Bootstrap

After the computer system is powered-on, the

operating system should be loaded into main memory. The

operating system is then executed. This is done using a

bootstrap program (See Figure III-I). The Bootstrap does

not meet any requirements, but is necessary for the

*i operating system to be loaded and executed in a disk

environment. Two ways that the bootstrap program can be

executed are:

111-2

Kq 7 Z Z... . 7 . .V

1.

* .*:.
Loa AMS ExExecute

fBootstrapf

I ~Pro gram

AMOS AMOS

1.2

Figur AMOSI Exct Boostapuror e

)

* 9..

b.9.
- Figure 1II-1 Execute Bootstrap Program"S9

4.
.-"2.

9.

~ -~1. The use of a low level function on the sse'

monitor. For example, on the TT-10 CP/M systems in

the Digital Engineering Lab, the letter C which is

entered by the user, initiates a monitor function

that bootstraps the operating system. (Ref. 23)

2. The processor would be held in a RESET state

while the disk controller independently loads a small

segment of code from the disk. This code is the

bootstrap program and is executed. (Ref. 1: 28)

Overall System Design

The system design was separated into the following

three parts:

1. Intialization of Data Base.

2. Polling and parsing of the command.

3. Determination of the command type.

The initialization of the Data Base is to be

performed only once during the execution of AMOS. The

Data Base is the necessary information that the operating

system requires in order to function properly. The

polling and parsing of the command line and the

determination of the command is in a infinite loop (See

Figure 111-2).

111-4

A. ,-', .,-.,,.,+. ,,. +.. .-. ,.+...,-.-.,. .-. +. .. ,.:.,." .+.+..+-.... .' '.+?.+++'. ._,,-..+... :. ,.-.

~': ~AMOS

Execute.

AMOS
1.2

AMOS Global C ommand
Variables Table

0),

Command
Table

ivi

Initiaizee DetermineInti 1Command Valid
Data Base Line Command

1 .2.1 1 1 2.2_i 1 2-3

Figure 111-2 Execute AMOS

111-5

\. ',,' .. :''' ,-' '._. . .-.. v* ..'..'.- ." ... ,-. , .. ".. , ,. ",, v,.".,_-". ,' ... -.. . ."

T -- -. -. *... ---...-... '-..---.-.. -.1 .-.--

Initialize Data Base

The operating system has its own set of data

structures that it alone can access and control. For

example, it needs structures that will give the status of

processes (process control blocks or PCBs). When a

computer system is powered-on, the main memory is not

automatically cleared and may contain unwanted "garbage."

When the data base is loaded into the main memory, it

needs to be initially set to predetermined values (See

Figure 111-3). Some of these values can be changed during

the operation of the operating system, while others can

only be changed by in the source code of the operating

system.

Polling and Parsing of Command Line

After the operating system is read into main memory,

a polling routine is then executed checking the various

ports for incoming commands. The polling routine will

satisfy the user "friendly" environment. When a command

line is received, it is parsed, or broken apart, into the

various parameters. For example, for the RUN command, the

command line is parsed into the command and file name.

These various parameters make up the command table. This

command table is used when checking the validity of

111-6

[o *** . . 'a - . . * . . - . -.~*..

777• W. - " "

AMOS Global
Variables

Initialize

Data Base

1.2.1

Data Base ata Base
inf ion Information

. osGloba
1 Variables I

Retrieve Data Initialize
Base
Information Variables

1.1.11

Figure 111-3 Initialize Data Base

111-7

S- -. *--
* . * *

a requested command and in executing the command (See

Figure 111-4).

Determine Command Type

The command will be one of the following types:

1. User log-in.

2. User log-out.

3. Help user.

4. User commands.

5. Systems commands.

The first two command types are canned routines,

which means execution of these are similar for each

request. The latter three can vary for separate requests

having different parameters.
a'-

is The user is attempted to be logged-in. If the user

is found to be already logged-on, then one of the

remaining four command types is performed. If the command

line does not follow the defined syntactical format, an

error handling routine is called. After the error routine

is completed, control is returned to the main body of the

system (See Figure 111-5).

111-8

tCommand
-Table

Parse Command

Line
1.2.2

Command

Table

Command
Line

Portno Portno Line

I
Lin

Poll Terminal Process Read Command Build Parse

Ports Scheduler Line Table

1.2.2-11 1.2.3.5.2.2 1.2.2.2 1.2.2.3

Figure 111-4 Parse Command Line

1.d.

L'S

.
1 1 -9

.................-N -- * .* .-.

- 4'",...s

Command
Table

Determine
Valid
Command

1.2.3

Syntax Error

• .. - P~rD0 Command Table

'.- ".- ommand
-r able CommandPortno. - " "__ Table

A 4
Log-in Help Execute User

User User Command

12.3.1 1.2.3.3 1.2.3.5

Log-out System

User Change
1.2.3.2 1.2.3.4

Figure 111-5 Determine Valid Command

Notes is a connector to the Build Error Message
Module

111-10

Validating Command

When determining the command type, user log-in, user

log-out, and help user are validated. User and system

commands have certain parameters that must be verified

before execution.

The file name and username are the parameters that

are verified for user commands. The requested file is

checked to see if it is located in secondary memory (e.g.

disk). If the requested file is located in secondary

4. memory, then the user name for the file is checked against

the user's username to verify that it is a legal owner of

the file. This design will allow for public domain

filing. Public domain filing would allow any file to be

accessed by any user that is allowed on the system.

The validation of system commands is done by checking

if the user requesting a system change is the 'Superuser'.

The 'Superuser' is the user authorized to perform system

changes. The 'Superuser's username and password should

only known by those individuals authorized for system

A" access.

Execution of Valid Command

This module will ensure the use of a multiprogramming

. environment. This is done by having the System, Log-in,

'

.

Log-out, and Help commands to be executed without waiting

and by having the user commands wait in the process

queues.

System Command

The system command is a special command that cannot

be used by any user logged onto the system. It should

only be executed by the 'Superuser.' This 'Superuser' has

a designated username and password, as do other users.

.. The difference between the 'Superuser' and other users is

the username for the 'Superuser' is part of the original

source code. The password for the 'Superuser' should only

be known by those designated individuals that will have

authority over the computer system. The password for the

'Superuser' should be changed frequently to avoid any

tampering by individuals that determine the password code.

The design of the execution of the system command is

shown in Figure 111-6. The authority of the user is

verified by checking to see if the user is the

'Superuser.' If the user is not the 'Superuser,' then a

unauthorized user message is sent to the user. If

validation is completed and the user is authorized to use

the command, then the system is configured based on the

* command. To configure the system, a menu is sent to show

a.. , ~.. the options the user has to choose, along with a prompt to

.1 1

• * 111-12

.............................

!....'

ICommand
Table

System

Change
1.2.3.4

Portno' s
Username

(---a I Superuser's
Auth./ Username
Unauth. tommand
User Table

Verify Configure

Authority System
,:-.,1.2.3.4.1 1 .2-.3.4.2

Figure 111-6 System Change

1 ,.4-

'4

- - "1II-13

J~o . ,p " ,- , • •, • .. . , , , .,, - , ..

.J.,

, input the information. When the required information is

input by the user, the system changes are made and the

system is configured to the new data.

Log-in User

Before the user can do anything with an operating

system that uses usernames and passwords, the user must

log onto the system. In the iesign, to log-in a user the
-following steps are to be taken (See Figure 111-7):

1. The user inputs username and password when

-v prompted.

2. The username is checked against the list of

usernames that can access the system. If it is not

in the list, then the user is not logged into the

system. If it is on the list, the password

associated with the username in the list is checked

against the password input by the user. If it is not

the same password, then the user is not logged into

the system.

3. The user parameters are initialized to log-in the

user and a logged-in message is sent to the user.

111-14

p -

i

J, I .

-" P ortno

Log-in
User

".-, 1 .2.3.1

Portno Logged-in

Set Up User Build

Parameters Message
.1.1 1.2.3.1.2

*.. Figure 111-7 Log-in User

11-1
'I

III1-15

.......................-.....,.........-......-".-..."."...-... ,

%- '.* Log-out User

An importance of logging-off of a system is the

freeing of a terminal which can be used by another user.

Logging-off tells the system that you do not need to do

any more operations and are freeing the allocated

workspace, terminal, and any other devices. In the design

of the execution of the log-out command, the user

• ' parameters are cleared and a log-out message is sent to

the user. The user parameters are the structures that

inform the system about the user's current status. When

the parameters are cleared, this informs the system that

the user is no longer logged-on. The user would have to

log-in to access the system, after the log-out command is

completed (See Figure 111-8).

Help Command

If a help command is received the user can be

requesting either system information or command

information. Whichever is requested the user is provided

with the necessary information. The design does not

include the necessary information for user log-in. This

information will be documented and available for each

user. This implies that a user must be logged in to

request help.

111-16

S-1- --.

-0rtno

' User

• 1.2.3.2

PPortno Logged-Out".4

UClear User Build

Parameters Message

S1.2. .2.1 1.2.3-1.2

Figure 111-8 Logout User

SI."
III1-17

.1%

In the design of the execution of the help command,

the information is retrieved and sent. Before the

information is retrieved, the command is checked to

determine if the user is requesting command information or

system information. Command information is the format of

commands and the description of what the commands do.

System information is the status of the computer system

(See Figure 111-9).

User Commands

User commands are divided into the following five

types:

1. Running a file.

2. Listing a file.

3. Printing a file.

4. Deleting a file.

5. Directory information.

The execution of all user commands are similar.

First the file must be located (the directory is saved in

a specific location), second the file must be retrieved

from secondary memory, third the file is buffered into

main memory, fourth the job is placed into a waiting queue

7 for execution. After the four steps the files waits for

111-18

.°

.. a.

I Command
"Table

Help

User
€1.2.3.3

System Command-'_ _ Help

Get System Get Command

Information Information

1.2.3.3.1 1.2.3.3.2

System Command
Information Information

"-'aBuild
.- Message

. •, 1.2.3.1.2

Figure 111-9 Help User

I1

j-" 111-19
;..4

.- its turn for execution.

To run a file, the executable code is located in main

memory and then executed for the user. To list a file the

file is taken from main memory and transmitted to the

user's terminal. Printing a file is similar to listing a

file except it is transmitted to a printer. Deletion of a

file is done by buffering in the directory section

containing the file information and deleting it from the

listing and then writing it back out to secondary memory.

Directory information is executed by transmitting the

buffered directory to the user's terminal (See Figure

III-10).

Evaluation of AMOS Design (Testing)
4..?

The evaluation of AMOS design consisted of a two

phase process. The first phase checked to see if the

design had a logical structure. A logical structure

should have upper-level modules calling lower-level

modules in a organized sequence. The sequence would

follow a logical flow. For example, it is necessary to

call a module getting a username before calling a module

to check if the username is valid. The second phase

determined if the data flow between modules was logical.

The data would be needed in the called module or in

.- another lower-level module. This lower-level module is

111-20

b.................

-. 4.T -7, -w

Command
Table

Execute
User
Command

1.2.3.5

Command Command
Table able

-- p

Valid/
Invalid

4t

Validate Execute
UserComn

CommandComn

L- 1.2.3.5.1 1.2.3.5.2

Figure III-10 Execute User Command

* 111-21

...

S,a child of the called module (Ref. 13: 220).

In the evaluation of the logical structure, a few

minor changes were necessary. One of these changes

involved the polling routine. The first design did not

take into account that the users could be idle for a long

period of time while a process was ready to run. The call

to the Process Scheduler was added after a set number of

polls with no response. Another change involved execution

of a user command. The execution of each user command was

similar; this allowed for common modules that would be

called to execute the commands.

The data flow was verified to be logical with a few

changes. To execute a command, in the initial design, the

command table was the data flow item passed between the

modules. When the Process Scheduler was incorporated into

the design, the process control block was the new data

flow item.

Summary

This chapter presented the overall system design of

AMOS. The top-down design approach was followed using

structure charting. The operating system was designed

with the idea that it would be implemented using a

structured programming language, i.e. C.

do 111-22

"~~~. %.•., o ', - . . •J. . '.. '. " . " , .

The overall system design is separated into the

following three parts:

1. Initialize of Data Base.

2. Polling and parsing of the command.

3. Determination of the command type.

These three parts are the first level of the

structure chart and call other modules in lower levels.

The structure charts are located in Appendix B. The

process definitions and data dictionary are located in

Appendices C and D, respectively.

* 111-23

-... ,.......... ,.

IV. Memory Management of AMOS

Introduction

Memory management deals with the management of main

, memory (Ref. 7: 105). The memory management scheme

selected for initial implementation on AMOS was dynamic

partitioned allocation. The reason this scheme was

A selected over other possible ones will be explained in

this chapter. The follow are four basic functions that

any memory management technique processes (Ref. 7: 105).

0 1. Keeping track of the status of each main memory

'I , location.

2. A policy of allocation of main memory to jobs.

3. An allocation technique.

4. A deallocation technique.

The status of any main memory location can be either

allocated or unallocated. The importance of this function

is to ensure that if a process is in main memory waiting

for execution can not be over written, and that the area

of main memory for the operating system is always

allocated. Even with a single user system it is important

to the status of each memory location.

IV-1

NeL'

,*. The policy for allocation of main memory is dependent

on the type of system to be implemented (Ref. 7: 105,106).

If the initial implementation requires only a few users, a

simple policy would be sufficient. For a larger number of

users, a very complex policy would be necessary for a more

efficient use of available memory.

Allocation and deallocation is the process of placing

jobs in and then taking them out of main memory

respectively. The allocation of main memory to jobs is

important to allow execution and to allow for the

execution of the maximum number of jobs. Deallocation is

important to remove jobs as efficiently as possible.

AMOS Memory Allocation

Dynamic partitioned allocation (DPA) was the scheme

initially selection for implementation for AMOS. Because

DPA allows for multiprogramming which is mandatory for

AMOS, unlike a single contiguous scheme. The level of

complexity is not as great as a segmentation or

demand-paged allocation schemes (Ref. 7). Also by

implementing with DPA the operating system can be easily

updated to handle different algorithms which is necessary

for a teaching system.

The first criteria that DPA allows for is to have

more than one job in main memory at one time. This is

IV-2

44 . - * . *.

done by allocating the amount of memory that the job needs

and no more. The rest of the area that the job is not

located in is unallocated (free). This free area can then

be used to load other jobs into main memory.

Status of Memory Partition on AMOS

The status of each memory location is determined by

having a buffer that contains the beginning and ending

address of each allocated jobs. Any area of main memory

not residing in the buffer is considered as 'free' area.

Allocation Policy Used on AMOS

The two type of allocation policies that could be

implemented on AMOS are first-fit and best-fit. First-fit

searches the free area table to find the first partition

V large enough to fit the incoming job (Ref. 3: 250). This

free area table is ordered by memory location. The first

area of memory that can accomodate the job will be used

and the unused area will remain free. Best-fit searches

the free area table to find the partition that wastes the

minimum amount of space (Ref. 3: 249). If the free area

table is ordered by the size of the partitions, then the

-' algorithm used in best-fit is the same as in first-fit.

S"-This is true, since the first partition large enough for

IV-3

S" the incoming job, it is also the best partition. Best-fit

also reserves large partitions for large jobs by using

small partitions for small jobs. Because of this, it is a

greater possibility that large jobs will be executed

without any wait by using best-fit. By all of the above

reasons, best-fit was the policy selected for initial

implementation on AMOS.

.Allocation on AMOS

Once a large enough partition is available for a job

-. the process of allocation is necessay. On AMOS a job is

read from secondary memory a sector at a time and then

transfered into the appropriate partition. The reamining

area is placed into free area and the occupied area is

considered allocated. Once the entire job is in main

memory the beginning and ending address is placed into the

job scheduler waiting queue. There the job is waiting to

be executed.

Deallocation on AMOS

After a job is completed execution the area that it

resides in must be made into free area. This is done by

"-i taking the allocated array is changed reflecting that the

job is removed. This program will remain in main memory

IV-4

" .. .". .' . " ." . ."! ." . ,° *A - .-_.9 -L, '- . . - -- .'"

.. until some other job over writes it. This program is

unable to be accessed since the area it occupies is

consider 'free.'

Design of AMOS's Memory Management

The design of AMOS's memory management, like the rest

of the operating system, was done using a top-down

approach. The memory management design was separated into

*" the following two parts:

.1. Allocating the job to main memory
I 2. Deallocating the job from main memory

Allocating the Job to Main Memory

The process Get File calls the necessary processes

for placing a job into main memory and preparing the job

for execution (See Figure IV-1). The following are the

-, processes that Get File calls:

1. Check Space

2. Build PCB

3. Read File

4. Build Error Message

IV-5

.................................... %% ... 9'5. .

.l• . l*

e%.S

S,.Command
Table

Get
i.;:,[.File

-1.2.3.5.2.1

No Space

File Descriptor 6vailable

c C ommand
).. .Table File

Descriptor

Check Build Build Error
Space PCB File Message

E. 5 1,-.. 1.2.35.

.1.2.3.5.2.1.1 1.2-.3.5.2.1.2 1.235.2.13 1.1 .3

Figure IV-1 Get File

'I..

IV-6

[,'a.

Check Space, determines if there is enough main

memory space for allocation of the job and where in main

memory the job is to be placed. Build PCB, constructs and

initializes a Process Control Block that is necessry for

execution of the job. Read File, reads the job from

secondary memory and places it into main memory at the

alresdy prescribed location. Build Error Message is

called when there isn't enough available space for

execution of the job and if the job is too large for

execution on the system.

Deallocating the Job from Main Memory

Deallocation of the memory is executed when a job is

completed or aborted. The module Run Process calls

Deallocate Memory Space to have the space 'freed,' (See

Figure IV-2). After this main memory area is 'freed,'

control is returned to Run Process. If there is a

timeslicing environment, then this must only be called

when the job is completed or aborted and not when the job

is stopped.

Implementation of AMOS's Memory Management
4.

The coding of AMOS's memory management is a

. one-to-one transfer from the structure charts. The

IV-7

a- .a-/' -]- 9 a a-* aa.* °'. %J 4 -.*% -.. a.-"°". a- ***,. -- -". ". - a.". a'-a. "- ''.;, "

.4*~w T-- - .L*

.

PCB

Run
*1

Process

1.2.3.5.2.2.3

-- o I PCBI

PCB PCB PCB PC B

Send File Write File Deallocate
To Port To Secondary Memory Space
1.2.3.5. Memory 1. 1.2.3.5.

- 2.2.3.1 2.3.5.2.2.3.2 2.2.3.3

Run System Run

Change Program
1.2.3.5.

1.2.3.4.2 2.2.3.4

Figure IV-2 Run Process

S4.

4.Z . 0.%

.

- 1** % 4
4

.%
* * .. . , o • -

pseudocodes of the modules to be discussed in this section

are:

1. Get File

2. Check Space

3. Read File

4. Deallocate Space

The source code of these subroutines can be found in

Appendix E.

Get File

-4 Get File calls a subroutine called Check Space which

determines if there is enough available space in main

memory for execution of the job. If there is enough

space, the job is then located in secondary memory. The

job is then taken from secondary memory and placed in main
5%

memory in a contiguous section. Once the entire job is

placed in main memory the number of jobs in the system is

5' incremented by one. If there is enough space for the

execution of the job, an error handling routine is called

and control is returned.

The following is the pseudocode of the Get File

subroutine.

IV-9

." . . . * .*- -°-

Procedure Get File

If enough space for job (Check Space)

then

SBuild PCB

-k Read the job into main memory (Read File)

Increment number of jobs in main memory

End if

.- Else

Call error handling subroutine

' End else

End Procedure Get File

S.

.. 2 * **

Check Space

Check Space searches the free area table to find the

a location where the incoming job can be placed. If there

is more than one job on the system, a subroutine called

Sort is called to order the free area table from smallest

memory location to largest. Thus, the first partition

large enough for the incoming job is also the best

" partition. Check Space calls the error handling routine

when the incoming job is too large for all of main memory.

~IV-10
.,'''" . ' " - . . " " - . . " " " " "." " ' " " " " - ' " " ' - " "

The following is the pseudocode of the Check Space

subroutine.

Procedure Check Space

If two or more jobs in main memory

* then

Call Sort to have free area table ordered by memory

locations

End if

If large enough partition for the job

V

q ~~~~Alcthe theoin meor neeeudcdfte hc pc

PReturnenoh space fa

End if

Else

If program too large for all of main memory

Call Build Error Message

End if

'a Return Not enough space flag

End else

End Procedure Check Space
'1

'aeunNteouhsaefa

-n4es

.4EdPoeur hc pc

-a.!
,.IVI

[1o77-7

'Read File

Read File locates the file in secondary memory and

the reeds it into main memory in a contiguous block.

While each byte is being read in, it checks to see if an

End of File (EOF) marker has been reached. This indicates

that the entire file has been read from secondary memory.

Once the EOF has been reached control is returned to the

calling module.

The following is the pseudocode for the Read File

- subroutine,

'.9.

Procedure Read File

While not EOF

Read a block of the file and place into main memory

A Check for end of file marker

Move to next block

End while

End Procedure Read File

•IV-. -

IV-12

Deallocate Space

-, Deallocate Space 'frees' tnat area of main memory

where a completed or aborted job was. This is done by

just updating the free area table to indicate the area is

now 'free.' The jobs in main memory must also be

decremented by one

The following is the pseudocode for the Deallocate

Space subroutine.

Procedure Deallocate Space

Determine which area is to be 'freed'

Remove that area from the free area table

Decrement the number of jobs in main memory

End Procedure Deallocate Space

.".

Summary

,a, Dynamic partitioned allocation with a best-fit policy
-.

was the memory management scheme selected for initial

implementation on AMOS. The design of the memory

_- -...,: management part of AMOS was separated into two parts.

IV-13

,,,- , ,-, , :'.,\ ' - ,' :.. < + -,. . &-.. . i,, -. .. . -. -.K . -.,-,...,,. _ . :LX-_.. .. 1. . .-i....++ . .

P I!7 7 7 7 i 7.. 1. v . . II I - .. , ,.I

These two parts were allocating the job to main memory,

and deallocating the job from main memory. The pseudocode

for the memory management subroutines was presented in

this chapeter. The actual source code of these

subroutines can be found in Appendix E.

-"

n"-

IV1

* -. , .. #. * . *. i. * --. -_ -.6

V. Secondary Memory Specifications

Introduction

The purpose of this chapter is to present the

specifications for secondary memory. The specifications

for secondary memory are:

1. Directory format

2. Sector format

Directory Format.ANN

The directory is divided into two areas. These areas

are the free sector information and the file information.

The free sector information is located in the first six

bytes of the directory. The file information follows the

free sector information in groups of 27 bytes. The

following is a byte description of the directory:

Number of Last Free
FreerS.Prs Track & Sector EOF

01.2 4 5 6 3,34

First Free Directory
Track & Sector Entry

- - Figure V-i Directory Byte Description
'i -V 1

- _-i

* The first two bytes of the directory contain the

value for the number of free sectors on the disk. The

next two bytes point to the track and the sector of the

first free sector. The last two bytes point to the track

and sector of the last free sector.

|%L'

The file information group is divided into the

- following four blocks:

1. File status (1 byte)

2. Filename (12 bytes)

3. Username (8 bytes)

4. File Information (6 bytes)

The following is a byte description of each directory

entry:

...

Begin End
Track Track

PeriodT
Fie .Beg End

File's Name Exten2ion File Sec Sec

Statu Fienm Username(8bts

-Inform a i 2
ThFie Vlwn Diretr Enbtry Byedescriptioncdictr

-V-2

Status Filenaero Usran ie
ByeEnfretind

Figue V-2 iec. tye r Byt DSipt inI

- iiii~V- 2
"V i 2 .4..6 78 *

. The status of a file is either accessable or deleted.

If a file is accessable, byte 0 has the null character.

If a file has been deleted, byte 0 has the asterisk 1"*")

character. It is necessary to update this byte whenever a

file is added to or deleted from the disk. If a file is

added, the sectors that the file was placed in must be

removed from the free area. If a file is deleted the

sectors that the file was in must be added to the free

area.

Bytes 1-12 contains the name of the file with its

extension. The first 8 bytes is the file's name. Byte 9

has the period (".") character. Bytes 10-12 contains the

extension of the file.

Bytes 13-20 contains the username of the user who

. saved the file on disk. This allows for the file to be

accessable only to the user who saved the file. This also

allows for a type of mail routine by having a reserved

username of any public file.
44

Bytes 21-26 contains the files size and location

information. The first two bytes contain the number of

sectors that the file occupies. The next two bytes are

the beginning track and sector of the file. The last two

bytes are the ending track and sector of the file.

v-

-.4

RQI V- 3

'4
4q

Sector Format

A typical 8 inch single density floppy disk contains

128 bytes per sector. The format of each sector of AMOS's

secondary memory will consist of the last two bytes

pointing to the next track and sector in its respective

list. The byte description of each sector is shown in

Figure V-3. These lists are the free sector list and the

file sector list. The last sector of each list points to

track 0, sector 0. This indicates that the end of the

free area or file has been reached.

When a disk is formatted for AMOS, a directory entry

is reserved, then each remaining sector points to the next

logical sector with the last sector pointing to track 0,

sector 0. The logical sector is determined by the

rotation speed of the floppy and the retrieval time of the

floppy (Ref. 7: 303-306). The directory's first 6 bytes

contain the number of free sectors and the locations of

the first and last free sectors.

Next
Storage Area Sector

0 1 2 16 127

~II

Track

Figure V-3 Sector Byte Description

v-4

W. ,-.- . - .. . §: - - :-.. &. , - .Q .-K • . . .-K.,

ZI

' "When a file is added to secondary memory, the file is

stored at the first free sector and is then stored in each

successive logical sector until the end of the file is
%4.

reached. The last sector points to track 0 and sector 0.

The free area table and directory is the updated to

C indicate the change. When a file is deleted from

secondary memory the last sector of the free area table

points to the first sector of the file. The free area

table and directory must be updated to indicate the

change.

V Summary

This chapter presented the specifications of

secondary memory storage. These specifications included

directory and sector format that the main memory manager

requires. The secondary memory manager was not

-. implemented because of the lack of driver routines.

.

.,.

-v-5

"y

VI. Implementation of the Operating System

Introduction

The purpose of this chapter is to present the

pseudocode of the algorithms that were chosen for

implementation in the detailed design. The coding of the

operating system, and some of the problems that occurred,

are also discussed.

"Coding is the implementation of the refined design,

with the idiosyncracies of the programming language,

operating system environment, and external (human and

hardware) interfaces taken into account" (Ref. 11: 12).

4"4 Since the structure charts were used in the detailed

analysis, the coding was nearly a one-to-one transfer

from structure chart module to coded subroutines. This

provided the modularity that was striven for in the

design. The updating of any of the subroutines, either

making a minor change in the original subroutine or

replacing the entire subroutine, can be done without

changing any other routines, as long as the interfaces

between subroutines do not change.

d.:.

.%

~ .,.~ Main

The Main subroutine is the first procedure that is

. executed. This subroutine was coded using the design

* given for the EXECUTE AMOS module in Figure 111-2 on page

111-5. The operating system is centralized around this

subroutine. The following is the pseudocode for the Main

subroutine:

Procedure Main

Initialize Data BaseG
Loop

Parse the command line

Determine valid command

Forever

End Procedure Main

,°.
°

Initialize Data Base

The Data Base is information used by the operating

system and is defined in the source code. Since the

- passing of variable parameters is complex, the C-defined

VI-2

structures for the Data Base are global to the operating

system. The variables are made global by defining them

before the main module (Ref. 12).

The implementation of initializing the Data Base is

WNdone by using a simple operator, the assignment or =

- This subroutine was coded using the design given in Figure

111-3, on page 111-7. The information that will remain

- -'.constant during the execution of the operating system is

implemented using the C language '#define' (Ref. 12: 86).

The information that might be changed during the execution

of the operating system is initialized in a subroutine,

called INITIALIZE-DATA-BASE (see Appendix E). The initial

values can only be changed by software enhancement. This

implementation is only recommended for the initial

~.**testing. Any updated version of INITIALIZE DATA BASE

module should follow the design presented in figure 111-3,

on page 111-7.

The suggested implementation for initializing the

Data Base is reading the information from a file on the

'-." -

operating system's disk (e.g. the VMS /S for the VAX

11/780 located in the Digital Engineering Lab (Ref. DEL)).

This allows for an easy updating of the Data Base. For

example, when adding another terminal to the computer

system, it is not necessary to change the source code and

recompile it. The changes can be done by a System command

S. ".-" which can be written when this implementation is added.

VI-3

a ..',,~

The System command would change the information in the

following parameters:

- 1. noports, the number of on-line terminal ports.

o ::2. MAXJOBS, the maximum number allowed on the

system.

3. portdata, the data table for the terminal

;V " ports.

The changes in the Data Base would be saved in the

Data Base file either when the System command to change

the Data Base is executed or when the operating system is

shut down. The shutting down of the operating system

- •would be performed by another System command that would

also be written when this implementation is added. This

System command is not needed for the initial

implementation because the saving of the Data Base is not

essential. The reason for this is the Data Base

initialization is coded. It is recommended that the Data

Base be saved at the time it is changed and at the time a

system shut down is performed. This will ensure that the

-a -~information of the Data Base is saved if a power failure

.. occurs after a change.

..4I.

.

~vI-4

-- Parse Command Line

% % This subroutine waits for a user to attempt to

communicate with the operating system, gets the user's

command line, and parses the line. The command line is

the character string that the user inputs from the

terminal and is terminated by a carriage return. This

.- subroutine was coded using the design given for the

PARSE COMMAND LINE module in Figure 111-4, on page 111-9.

-' The following is the pseudocode for the Parse Command Line

subroutine:

-S..

-S%

.¢p. .Procedure Parse Command Line

If Poll is true

then

40 Get the command line

Build the command table (parse the command line)

_.., End if

End Procedure Parse Command Line

VI-

2. '."

-..

:.v vI-5

.' - -'

'

•* .- "PO1
.% ~.;Poll1

The Poll subroutine returns a boolean value (true or

false). It polls the terminal ports to determine if there

is any input. The polling algorithm used is circular,

that is, it starts from the beginning of the ports (port

0), goes through to the ending of the ports (port n-i,

where n is the number of terminals on line), and goes back

to the beginning of the ports. It checks those ports that

do not have a submitted job. If a response is found, the

-. polling routine is stopped and the true is returned to the

Parse Command Line subroutine. If it goes through one

"" pass of the ports and does not receive a response, then it

. calls the Process Scheduler. The Process Scheduler takes

care of the processes that are submitted. This ensures

that any process that is in any of the process queues has

the chance to run. After returning from the Process

Scheduler, the polling is resumed. The following is the

pseudocode for the Poll subroutine:

VI-6

Procedure Poll

Set i to 0

* While no response

While not one pass and no response

If no process submitted from port~i]

4' then

Check port[i] for response

If response

[- then

Return true

End if

End if

Set i to next port number

End while

If no response

then

Process Scheduler

End while

End Procedure Poll

VI-7

- -Se i to O '

Determine Valid Command

The subroutine Determine Valid Command determines

what type the command is (i.e. system, user, help, and

control). If that particular command is valid, then it

calls the necessary routines to have the command executed.

This subroutine was coded using the design given for

• the DETERMINE VALID COMMAND module in Figure 111-5, on

page III-10. The following is the pseudocode for

Determine Valid Command:

Procedure Determine Valid Command

If user already logged in

then

If Log out command

. then

Log Out User

.- End If

If Help command

then

Help User

End if

If System command

* . then

VI-8
. .V1-

System Change

End if

If User command

then

Execute User Command

End if

If invalid command

then

Send invalid command message

End if

End if

End Procedure Determine Valid Command

Log In User

The procedure Log In User accomplishes one or two

functions. If a user inputs a command line, then

Determine Valid Command wants to know if the user is

already logged on. If the user is logged on, then control

returns to Determine Valid Command to execute the user's

command, else the user is attempted to be logged on. The

global table userblock has a logged on flag that is set to

true or false. The flag that corresponds to the

terminal's port number is checked to determine if the user

VI-9

• . •. ..,.. o , :.C *. . --..- ., . - .- :..,

is logged on, yet. This subroutine was coded using the

design given for the LOG-IN USER module in Figure 111-7,

on page 111-15. The following is the pseudocode for the

Log In User subroutine:

Procedure Log In User

If user not logged on

then

Prompt user for username

Read in username

Prompt user for password

Read in password

If legal username and password

then

Copy username into userblock

Set loggedon flag

Increment number of users on system

Send login completed message to user

End if

End if

End Procedure Log In User

VI-,-

".%.' .. .

a".A°.&

.Z V 1

Al ..J . - . '-5-

[.9

Log Out User
N.

The Log Out User subroutine is a simple routine, but

accomplishes an important cleanup function. It clears the

userblock of the username and sets the logged on flag to

false. It also sets the jobrunning flag to false. The

jobrunning flag should already be false, since the user

cannot communicate with the operating system unless no

jobs were running. This subroutine was coded using the

desgn given for the LOG-OUT USER module in Figure 111-8,

on page 111-17. The following is the pseudocode for the

Log Out User subroutine:

Procedure Log Out User

Send logged out message to user

Clear username space in userblock table

Set loggedon and jobrunning to false

Decrement number of users on system

End Procedure Log Out User

VI-lI

.\ "-** "Help User

The Help User subroutine provides information to the

requesting user. The two types of information that is

provided are system information and command information

(Ref. 4: 52). A system help request would give

information to the user about the system. The following

is an example of a system help request:

'HELP USERS'

. This command line would result in the listing of all

of the users that are logged into the system and what

terminal number that each user is using. A command help

request would give the format for the command and any

-_information for the command.

The following is an example of a command help

request:

'HELP DEL'

The response from the operating system would be as

follows:

'Format: DEL FILENAME'

VI-12

N.

.

This subroutine was coded using the design given for

the HELP USER module for in Figure 111-9, on page 111-19.

The following is the pseudocode for the Help User

subroutine:

Procedure Help User

If system information is requested

then

Determine what information is requested

Get the information and send to the user

End if

Else

If command information is requested

then

Determine which command's information is needed

Send the format and other information

End if

Else

Send no help available message

End else

End else

End Procedure Help User

VI-13

%'e
"

7

System Change

The System Change subroutine determines that the user

is the 'Superuser', then it determines what changes in the

Data Base are requested, gives the user any needed prompts

for the new information, and performs the necessary

changes. This subroutine was coded using the design given

for the SYSTEM CHANGE module in Figure 111-6, on page
. 111-13. Because the initial coding of the operating

system does not have a dynamic Data Base (that is, the

initial values cannot be changed from loading to loading

on the computer system), there are no system changes that

can be permanently performed. When the dynamic Data Base,

using a Data Base file, is implemented, system changes can

be performed with the changes saved.

In the coding and design of this operating system, a

process is sent through the Process Scheduler to be

executed. But the system command is an exception, it is

executed without having to go through the Process

Scheduler to run. The option to execute it with the other

*processes is in the source code, because of the following:

1. A System Ready Queue is available.

- -2. A Process Control Block (pcb) is made for the

system command.

. -

~Vl-14

* . . * *-

3. The pcb is entered into the System Ready Queue.

4. A subroutine is written that would execute the

system command when it is given the processing

time.

The following is the pseudocode for the System Change

:

subroutine:

Procedure System Change

If the Superuser

then

Determine which change is to be performed

Prompt the Superuser for the new information

Get Superuser's response

Change the Data Base

End if

Else

SSend not Superuser message to user

End else

End Procedure System Change

VI. *1
:.':: ,.-.

VI-1

.:v - 5

iI. I1 fi': ZiL~Ik-. . . .

Execute User Command

This subroutine determines if the requested user

command is valid. That is if the file being requested is
located in secondary memory, and if the user is requesting

4 their file. This subroutine was coded using the design

given for the EXECUTE USER COMMAND module in Figure

II-10, on page 111-21. For the RUN command it is also

necessary to determine if the requested file is an

executable file. If the command is found to be valid then

it calls the necessary routine for execution. The

following is the pseudocode for the Execute User Command

subroutine:

Procedure Execute User Command

If the command is valid (Validate User Command)

then

Execute the valid command (Execute Command)

End if

Else

Send error message to the user

End else

End Procedure Execute User Command

-%V,1

""" Vl-16

* VV.*.

0- &X-. -A PA .P

Validate User Command

This subroutine determines if the user has input

valid parameters. If all the parameters are valid,

control is returned to the calling subroutine. If any

parameter is invalid, an error subroutine is called to

handle the particular error.

This subroutine was coded using the design given for

" the VALIDATE USER COMMAND module in the figure on page

B-Il. The following is the pseudocode for the Validate

User Command subroutine:

Procedure Validate User Command

- If RUN command

then

Check filename, username, and if executable file

End if

If LIST, PRINT, or DEL command

then

Check filename, check username

End if

If DIR command

.i then

VI-17

*-71

This command is always valid

End if

End Procedure Validate User Command

.4

." Execute Command
a.

This subroutine calls the necessary subroutine to

move a job from secondary memory into main memory. The

*steps to perform this task are:

1. Locating the file.

2. Getting the file.

3. Placing the file into main memory.
'.%

4. Calling the appropriate subroutine.

After these steps are finished the Process Scheduler

is called. The Process Scheduler will then perform the

appropriate steps to execute the specified command. This

subroutine was coded using the design given for the

EXECUTE COMMAND module in the figure on page B-19.

.

. . Vl-18

4.

Build Message

The Build Message subroutine builds the required

message that is transmitted to the user. These messages

fall into the following three categories:

1. Prompts.

2. Command formats.

. 3. System messages.

A prompt is a message sent to the user that is

requesting some additional information. This information

- can consist of username, password, Data Base changes, and

, others. A command format is a message that informs the

user of the required format for a command. This message

is used by the Help User subroutine. A system message is

a message sent to inform the user that a system change has

been completed.

*. The calling subroutine sends a single coded parameter

used in the seletion of the message that is to be sent to

.v. the user. The message is not actually 'built,', but it is
, -a

defined in the beginning of the subroutine. The message

is then sent to the Transmit Message subroutine, which

needs the terminal's port number that the message is to be

sent.

. -This subroutine was coded using the design given for

VI-19

¢, '~~~~~~~~~~~~~.-....'...'..."..... .. , .-.. ,--....-.-. . -. ., : --.- - .',

the BUILD MESSAGE module in the figure on page B-24. The

-. fol lowing is the pseudocode for the Build Message

-- subroutine:

Procedure Build Message

Define Messages

Case message code

Code = 0: Send no help message

Code = 1: Send run command format

Code = 2: Send list command format

Code = 3: Send print command format

%-.- Code = 4: Send delete command format

Code = 5: Send directory command format

Code = 6: Send username prompt

Code = 7: Send password prompt

Code = 8: Send logged out message

Code = 9: Send login complete message

Code =10: Send job done message

additional messages can be added

Default: Send no message error (for testing purposes)

End case

End Procedure Build Message

VI-20

-- t-" --~

--, . . - . -. ..: . -. -.. , . : . - . p .J - .---. _-.
-
. " .. .

Error Handling

Errors are handled through a subroutine called

'Error', and then control is returned to each calling

subroutine indicating an error was received. Having

control returning to each calling subroutine indicating

that an error was received, allows for the errors to be

handled efficiently. The Error subroutine performs the

same type of function as the Build Message subroutine

does, except the messages that are sent are error

messages. This means that the error messages are defined

Qin the beginning of the subroutine

This subroutine was coded using the design given for

the BUILD i.%ROR MESSAGE module in the figure on page B-18.

The following is the pseudocode for the Error subroutine:

Procedure Error

Define error messages

Case error message code

Code = 1: Send syntax error received
Code = 2: Send invalid filename

Code = 3: Send improper user retreiving file

Code = 4: Send illegal user trying to log in

VI-21

Code 5: Send unauthorized user attempting to do

system change

Code = 6: Send unreconizeable was received

Code =7: Send not enough space to execute job at this

-~ time

Code = 8: Send program too large for execution

Code = 9: Send process was aborted before completion

Code = 10: Send Non-Executable file, unable to run

Ccde = 11: Send Executable file, unable to print

(additional error message can be added whe,;n necessary)

Default :Send no error message error (for testing

purposes)

End case

End Procedure Error

Static Analysis

Testing the source code requires using a software

testing technique. The initial testing on --he AMOS source

code was static analysis. Static analysis is "fa

collection of analysis and testing methods that do not

require the execution of the subject program" (Ref. 24:

5-1) . The capablities that static analysis can accomplish

are: (Ref. 24: 5-1)

VI-22

.. .
. -

k DA18R8 EALE EIG NDIPEMNAIO FMULTIPROGRAMMING OPERATING SYSTEM..U) AIR FORCE INST 2/
OF TECH WRIGHT-PATTERSON AFB OH SHOOL OF ENGI.

NC'SFID RK MILLER DEC 83'AFIT/GCS/EE/831) 14 F/G 9/2 N

,=m~h~~~hh

.m

1162 12.2

*1,%

U0 1 12.0

11112 11.4 1.8

1 04-

-

MICROCOPY RESOLUTION TEST CHART

.4 NATIONAL BUREAU OF STANDARDS4963-A

%5

.4AM

1. Detect and locate certain types of program

errors.

2. Identify program anomalies, characteristics that

produce errors.

4 3. Identify constructions that do not conform to the

standard syntax.

* .. 4. Determine whether the variables are used in

accordance with the intentions of the programmer.

5. Help to generate test data for dynamic testing.

The types of program errors that are looked for are

infinite loops, module interface conflicts, recursive

procedure calls, and uninitialized variables (Ref. 24:

2-2). Because the design was evaluated closely, the only

program errors that were found were uninitialized

variables. This was the result of a programmer forgetting

to initialize counters used in conditional statements and

loops.

One program anomaly was found, using static analysis,

and corrected in the design, as well as the code. This

anomaly was the deleting of two seperate files on the same

sector that are on two seperate processes that are in'.

ready states. The original design and code would delete

the first file, but when the next file is deleted, the

". . first file is restored and only the latter file is

VI-23

.......& ..--..I.-,'.-.-.-S . .- *.-, .. '.. .-

$. deleted. This was resolved by making the DEL command

dedicated. That is, the command is executed without

interruptions. This ensures that a second DEL command

does not negate the first DEL command.

The syntax was tested using the C language compiler.

The compiler used is on the VAX 11/780 VMS O/S. This

compiler only compiled the program and checked the syntax

for the VAX C language, not for the standard syntax for

the C language. When this operating system is transferred

to another computer system, the source code will have to

be recompiled for that computer's version of the C

language.

A variable detected that was not used as it was

intended was 'end.' 'End' was defined in the global

variables as a right bracket. In the subroutine Get-file,

the variable 'end' was used as a flag that indicated an

end of the file marker was found.

/The test data that can be used for the dynamic

testing of AMOS could be the scenario inputs that were

used in the static analysis. These scenario inputs are:

1. RUN 'any parameter'

2. LIST 'any parameter'

3. PRINT 'any parameter'

4. DEL 'any parameter'

-. 5. DIR

VI-24

6. SYS 'any parameter'

7. HELP 'any parameter'

8. BYE

9. 'any parameter'

'Any parameter' is input that is valid or invalid.

This would test the valid cases and the invalid cases of

each command. A carriage return would be considered as a

parameter.

Summary

This chapter presented the alogrithms and pseudocode

for the modules implemented. AMOS is mainly constructed

with these modules. The pseudocode was translated into a

source code language, C. The source code was developed on

the VMS Operating System's EDT editor, which is on the VAX

11/780 located in the Digital Engineering Lab.

VI-25

VII. Conclusions and Recommendations

Conclusions

This thesis effort was concerned with the detailed

design and implementation of a multiprogramming operating

system for sixteen-bit microprocessors. The detailed

design consisted of reviewing the defined system

requirements (Ref. 4 and 5) and following the top-level

design specifications, in the form of data flow diagrams,

to construct the detailed design. The implementation

consisted of transferring the detailed design into a

structured language, that is C language.

The detailed design looked at the single user

environment to determine the processes that would be

necessary for the operating system. This was the majority

of the operating system design (Chapter 3). The design

was constructed for a single user and was modified to

handle a multi-user environment. These modifications

consisted of inserting a scheduler and a memory manager.

The implementation of AMOS followed the design,

except for one detail. Global variables were used instead

of passing parameters between modules, because passing

structure values on the stack is impossible in C. The

only variables passed between modules are flags and a few

VII-'

-. 77 N: 77 VI T- TV

2 ..: others, such as track locations, sector locations, and

command types. The problem of passing structure values on

the stack was also encountered in a previous effort (Ref.

1: 66).

This thesis effort was also concerned with the AMOS

memory manager and secondary memory specifications. The

detailed design of the memory manager was constructed by

following the top-level design specifications, in the form

of data flow diagrams tRef. 4: 81-83). The specifications

for the secondary memory was developed in conjunction with

memory management (Ref. 1: 44-61).

The implementation of AMOS memory manager was done by

transferring the detailed design into a structured

language. Due to the lack of device drivers secondary

memory management was not implemented. However, the

specifications for secondary memory was developed and

presented in Chapter 5.

The objective that was not met was the actual running

of the memory manager and the operating system. The

operating system, including the memory menager, was

logically tested using static analysis, but dynamic

testing was not accomplished. Logically, the memory

manager will provide a sufficient means of handling main

memory for the operating system.

VII-2

4I

.3 Recommendations

This effort does not complete the software

development cycle for AMOS. The testing phase and the

coding of assembly language subroutines are not completed.

'A Therefore, the source code has to be transferred from the

VMS O/S file system to a compatible 8 inch floppy disk for

the Am Z8000 system. Also, the Z8000 system must be

operational with a disk system, before the transfer can

take place and installation of AMOS can occur. Follow-on

thesis efforts are recommended to complete the operating

system's software development cycle.

Testing

The static analysis of the source code has already

been completed leaving dynamic testing to be performed.

This dynamic testing should include module, integration,

system, and acceptance testing (Ref. 25: 232). The

completions of these tests should be extensive to insure a

working product. It is recommended that these tests

should be done before transfer to the microcomputer

system, because the availability of software tools, for

example, a compiler and an editor.

Module testing is the validation of a single module,

*usually isolated from all other modules (Ref. 25: 232).

VII-3

This is done by using stubs in place of any modules that

is called by the module being tested and, also, by using a

driver to execute the module.

After completion of module testing, integration

testing should be performed. Integration testing is a

validation of the interfaces between modules, components,

and subsystems (Ref. 25: 232). This testing should be

done in a top-down fashion in order to prevent errors from

propagating down to lower-level modules. If the testing

is done in another fashion, an error that is found in a

higher-level module interface will most likely propagate

to lower-level modules that have already been integrated.

o System testing is the validation of the system to its

*initial objectives: it is a validation process when done

in a simulated environment or in a live enviroment (Ref.

25: 232).

Acceptance testing is the validation of the system to

the user requirements (Ref. 25: 232), which are defined in

Chapter 2.

Assembly Coded Routines

The assembly coded routines necessary for an

operational system are the device drivers and a kernel for

the scheduler. The device drivers might be obtained from

existing software, such as an existing operating system

VII-4

-4 .. z...%,,, .** .- %. .. *.. % , . - .% j , % . \.% - -. , - - ',i.i : - / ~ -. &. -.. -

-4

", for the microcomputer. The kernel will have to be

written, because it will have to meet the specifications

and design of the scheduler.

Source Code Transfer

Currently the source code is located on the VMS O/S's

disk storage and will have to be transferred to an 8 inch

floppy disk. This can be done by performing the following

steps:

1. Transfer the source code onto a magnetic tape

from the VMS disk storage.

2. Transfer the source code from the magnetic tape

to UNIX disk storage.

3. Make any necessary syntax changes that makes the

code compatible with the UNIX O/S.

4. Cross-compile the source code from C to Z8000

assembly code by using the cross-complier

available for the UNIX O/S (Ref. 1: 67).

5. Transfer the Z8000 assembly code to an 8 inch

*floppy disk that has a compatible format for

the Z8000 system.

~VII-5

-- - - - - - -,....~~7.27. - -e*q. * . C . .72 -7 7 .

4. . Operational Z8000 System

One way for the system to be operational, the

hardware components must be compatible and connected, and

a developmental operating system with a Z8000 assembler

must be obtained. The developmental operating system is

needed to execute the Z8000 assembler, so that the AMOS

assembly code can be converted to executable code.

. VI

*51

-'=
iVII-6

-- .. is., '_,, Ve . .. '. , '.,. . , , . 4.'. ,.,,'. .' ."-4 .-'.. . .'...:....- :.. "..,,.".*g'..** -. -5,- £5, S £ o* ..; ".

Bibliography

1. Huneycutt, Douglas S. Design a Multiprocessing
Operating System for Sixteen Bit Microprocessor, MS
Thesis, Wright-Patterson AFB, Ohio: School of
Engineering, Air Force Institute of Technology,
December 1982.

2. Shaw, Alan C. The Logical Design of Operating
Systems. New Jersey: Prentice-Hall, 1974.

3. Kaisler, Stephen H. The Design of Operating Systems
for Small Computer Systems, New York:
Wiley-Interscience, 1983.

4. Ross, Mitchell S. Design and Development of a Multi-
programming Operating System for Sixteen Bit Micro-

processors, MS Thesis, Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of
Technology, December 1981.

5. Yusko, Robert J. Development of an 8086 Multi-
programming System, MS Thesis, Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, December 1981.

6. Dzida, W. et al. "User Perceived Quality of Inter-
active Systems," IEEE Transactions on Software
Engineering, Vol SE-4, No.4, 270-276 (July 1978).

7. Madnick, Stuart E. and John J. Donovan, Operating
Systems, New York: McGraw-Hill, 1974.

8. Richie, D.M. "A Retrospective," Bell System
Technical Journal, 57: 1947-1970 (July - August
1978).

9. Zelkowitz, Marvin V. "Perspectives on Software
Engineering," Computing Surveys, Vol 10, No. 2 June
1978.

10. Fredman, Peter. Software System Principles - A
Survey, Science Research Association, Inc., (1975).

ii. Peters, Lawrence J. Software Design: Methods &
Techniques, New York: Yourdon Press, 1981.

. 1 j

BIB-i

~ .*x. 12. Coffman, E. G. Jr., et. al. Computer and Job-shop
Scheduling Theory, New York: Wiley-Interscience,
1976.

13. Horowitz, Ellis and Sartaj Sahni. Fundamentals of
Data Structures, Maryland: Computer Science Press,
Inc., 1976.

14. Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language, New Jersey: Prentice-Hall,
Inc., 1978.

15. Programming in VAX-lI C, Massachusetts: Digital
Equipment Corporation, 1982.

16. Yourdon, Edward. Techniques of Program Structure
and Design, New Jersey: Prentice-Hall, Inc., 1975.

17. Titus, Christopher A., et. al. 16-Bit
Microprocessors, Indiana: Howard W. Sams & Co.,
Inc., 1981.

18. Zarrella, John, et. al. Microprocessor Operating
Systems, California: Microcomputer Applications,
1981.

i 19. Hogan, Thom. Osborne CP/M User Guide, California:
Osborne/McGraw-Hill, 1982.

20. Lions, J. UNIX Operating System Source Code Level
Six, Bell Laboratories, 1977.

21. AM 96/4116 AmZ8000 16-Bit Monoboard Computer,
CalTfornTa: Advanced Micro Devices, 1980.

22. "Software Installation Guide: System Management
Operation," VAX/VMS, Vol. 10.

23. EE4.45 Lab Instuctions, Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October, 1983.

24. Heidler, et. al. Software Testing Measures,
Griffiss Air Force Base, NY: ROME Air Development
Center, AFSC, May, 1982.

'S

BIB-

'' . . - . . . -. -
'S - . % " - " . ' .' . -' . . - " ' ' ' ' ' ' ' ' . -'- - - , - - ' . -' " . , ," v

Appendix A

Initial Hardware Configuration

The initial hardware configuration for the AFIT

Multiprogramming Operating System (AMOS) is based on two

factors:

1. The requirements that were defined for the

microprocessor's computer sytem.

2. The availability of the microprocessor and the

compatible hardware necessary to construct the

computer system.

The microprocessor was selected earlier (Ref. 1) and

is the AMD Z8002. The selection of the Z8002 was

discussed on page 11-14. The Digital Engineering Lab has

an available AMD Z8002 microprocessor based computer

system which consists of the following:

1. Heathkit terminal (1)

2. Heathkit H27 Floppy Disk Drives (Double)

3. Am 96/4116A Monoboard with Z8002 microprocessor

4. Am 95/6120 Intelligent Floppy Disk Controller

5. Am 96/1128 128K Dynamic RAM Board

6. Am 95/5132 RAM-EPROM-I/O Board

A-1
.

W-W W. W-e- rzo- 4%, -. . o 7

42_ 7. Amc 95/6011 Arithmetic Processing Unit Board

8. Am 95/6452 Card CageS-

For the implementation of a multiuser environment, it

is recommended that the standard multibus serial interface

card should be incorporated with the above hardware. More

terminals would also be required. Other units or

peripherals can be added to the system when the need, or

opportunity, arises.

-. The Am 96/4116 Monoboard contains two RS232 serial

I/O ports, 24 parallel I/O lines, five programmable

counter/timer at 4 MHz, and power-fail capability (Ref.

21:1). Further specifications can be found in Reference

: 21. The specifications for the other AMD products are in

the following manuals:
,4

1. Am 95/6120 Dual Density Floppy Disk Controller

User's Manual

2. Am 96/1000 Series Dynamic Random-Access Memory

Boards User's Manual

3. Am 95/5132 PROM/ROM/RAM and I/O Board User's

Manual

4. Amc 95/6011 Arithmetic Processing Unit Board

User's Manual

5. Am 95/6452 Card Cage User's Manual

V.

A-2

,-.,[

.* -..-. The following is a diagram of the initial hardware

configuration:

.%

" pr lIntell- 8 inch
port I igent Floppy
n Serial Floppy Disk

- Inter- Disk Drives
.- Iface - D--trol-

SQU uTtlporl AM Z6002 Primary
Serial i Micro- Memory
Inter- I. i" Processori Q ;.I face r- '

Car

L_._ __'3

! ~ -iro -ethi

• I

4

A-3

5-

Appendix B

AMOS Structure Charts

This appendix contains the structure charts for AMOS.

The structure charts contain the modules designed in

Chapter 3 and both the modules designed for the Memory

Management and Process Management. The process

descriptions and data flow entries are located in

Appendices C and D, respectively.

Index

Execute Bootstrap Program B-6

Load AMOS into Memory
Execute AMOS

Execute AMOS ... B-7

Initialize Data Base
Parse Command Line
Determine Valid Command

Initialize Data Base B-8

Retrieve Data Base Information
Initialize Variables

Parse Command Line B-9

Poll Terminal Ports
Process Scheduler
Read Command Line
Build Parse Table

B-1

"" Determine Valid Command B-10

Log-in User
Execute User Command
Log-out User
Help User
System Change
Build Error Message

Log-in User B-il

Set Up User Parameters
Build Message

Set Up User Parameters.. B-12

Build Message
Read Command Line
Check User
Build Error Message

Execute User Command B-13

Validate User Command
Execute Command

Validate User Command o o ... o o ... B-14

o eeValidate Run Command
Validate List Command
Validate Print Command
Validate Delete Command

Validate Run Command o B-15

Check Filename
Check Username
Check Run Filename

Validate List Command.. B-16

Check Filename
Check Username

Validate Print Command B-17

Check Filename
Check Username

B-2

Validate Delete Command B-18

Check Filename
Check Username

Check Filename B-19

Open File
Get Username
Build Error Message

Check Username B-20

Build Error Message

Build Error Message B-21

Transmit Message

Execute Command B-22

Get File
Process Scheduler

Get File B-23

Check Space
Build PCB
Read File
Build Error Message

i ~ ~Builder PCB..........................PBit ue B-2

Insert PCB into Queue

Check Space oo..................o............B 2

Sort Memory Location
Build Error Message

Logout User o.......................o........o.... B-26

Clear User Parameters
Build Message

SBuild Message.... B27

Transmit Message

B-3

*5*s* v -'*' 4 '-4-4 'S. ,.* '* .5. .<

.. .* :: , l .. . 5. 5U. • JS~ ~ , - .. I', . . U , W ° - * - . .; . -."

Help User .. .B-28

Get System Information
Get Command Information

Build Message

System Change (Modified) B-29

Verify Authority
Build PCB
Process Scheduler

System Change B-30

Verify Authority
Configure System

Verify Authority B-31

Check User's Authority

Build Error Message

Configure System B-32

Build Message
Read Command Line

Process Scheduler B-33

Process I/O Wait Queue
Get PCB
Run Process
Build Error Message

Process I/O Wait Queue. B-34

Locate Unblocked Process
Delete PCB For I/O Wait Queue
Insert PCB into Queue

! Get PCB o................................ B-35

Check Ready Queues
Get PCB from Queue

~Run Process

Run System Change
Send File To Port
Write File to Secondary Memory
Deallocate Memory Space
Run Program

B-4
% " . % , . - , ' . - -. .','. .'.- - , ..

""Clean Up Queue B-37

Delete PCB from I/O Wait Queue
Delete PCB from System Queue
Delete PCB from ReadyQ1 Queue
Deallocate Memory Space

4

0,'

I-

lxecute
ootstrap
rogram

AMOS AMOS

Load AMOS Execute AMOS
Into Memory

1.1 .1.2

%B-6

I%

~B-6

%p. .- .- % % % % " ,% % ' . .' ,

pAMOS
xecute AMOS

S1.2

AMOS Global
Variables Command Table

Command
Table

Initialize Parse Command Determine
Data Base Line Valid

Command

1.2.1 1.2.2 1.2.3

B-

B-7

.4. % J:. 4< W V~ % Y V ** ,. *.

" | AMOS Globals

"- Variables

Initialize
Data Base

1.2.1

Data Base Data Base
T nformation- Information

AMOS Global
Variables

Retrieve Data Initialize

Information ariables

1.2.1.1j L1.2.1.-2

B-8NS.

S . * P '5* . d 2 d 2 :- . - - v . ' yg . :' . ¢ , ' - .- ' o".- W' '. , "- -> . . -. - . -- .' . .. '. -. . - . .'. . . ,

? Command
_ * . jTable

A. Parse CommandLine
1.2.2

Command Table

Ip

Command
Line

Portno Portno Iommand
Line

-Poll Terminal Process ead Command Build Parse
Ports Scheduler ine able

1.2.2.1 1.2.3.5.2.2 1.2.2.2 1.223

4__.

9%* B-9

I,

. ... _. ,

3 I Command Table

Determine
Valid
Command

1.2.3

yntax Error

Portno Command Table _

Portno Command
Table CommandTable

Log-in User Help User Execute User
Command

1.23.2 1.2.3.3 1.2.3.5

S.

Log-Out User System

Change

1.2.3.2 1.2.3.4

s a connector to the Build Error Message
" -- Module.

B-10

',a ' % .'".' " V'-" " . -. ". '4''.\,".' . .. -. "-""".- "-. . ,. -"-" .''"," . . ' "."' "."' '."• , ' " , .

f ortrno
Log-in User

1 .2.3 .1
p

Portno Logged-In

Set Up User Build
Parameters Message

1.2.3.1.1 1.2.3.1.2

"1

°.1

~B-II

. . .

* rortno

Set-up User
- Parameters

Toto Username Legal/

pornoT Password jUser

Build Read Command Check Build Error
*Message Line User Message

1 2 3 51.2. .1.2. 1.2.2.2 1.2. .1.1.1. -1235

.. ...

°'..A

|_4%

i ,

i-.-?5 . :

"-_ B---Po2n

...................... .,..

-J 7 M . ..,

* - ~ C ommand
* .,.- Table

Execute
User
Commanda.

1.2.3.5

ComandCommandCommand oable

Valid/Invalid

Validate Execute
". User Command

Command
1.2.3.5.1 1.2.3.5.2

.1

.

5%

S.

. B- 13

*.'. S . .°.

' •Command Valid/
Table Invalid

Validate
User

Command
1.2 .3.5.1

-Command Table Command Table

Valid/
Invalid A omd- 1Command Tal Validmman

Table nIValid/ a l $ Invalid I

.Invalid

Validate Validate Validate Validate
Run List Print Delete

Command Command i? Comad. -,,,,4
1,2.3.5.1.1A 1.2.3.5.1.2_ 1_ .2.3.5.1,3

,B 14

.:

~- 4V. Command I" " Table

Valid/Invalid

Validate
-a. Run

Command<. 1.2.3.-5.1.1

Valid/
Invalid

4
.Filename filename.
File's Username Vaid/

File 's InvalidUsername Portno's
Fie Username

* Check Check Check
Filename Username Run' Filename

0.. 1.2. .5...1 I.2.~.L .2--.B.15

.1

.'

-.

4'°°

-'.

4,..,B 5

"4

-'"4 .: - l . *. : - " . '% . 1 -. : ' 1 -% " ' . " -"- ' "-"-"- " - "- ' '- . .

Command Valid/
Table Invalid

Validate
List

Command
1.2.3.5.1.2

Valid/

Filenamee's Username

-Ii- Potno' s

Username Username Valid/
Invalid

Check Check

Filename Us ername
1.2.3.5.1.1.1 1.2.3.5.1.1.2

..

.1!

S.

B-16

a.

Valid/ Command
V. Invalid Table

Validate
Print
Command
1.2.3.5.1.3

Valid/ Valid/
Invalid Invalid

File' s Username * ror-tnu' -
Usew Iane

Filename ile' s
u ername

Check Check
Filename Username

.2.3 .11.2.3.5.1.1.2

,'t.

B-17
-

, ,, , -. ', -. . .. , ",; -... .- ,. ., -. ,, ., +'S.+ .+ ."5.. ',-.. '-. +. ,- . - ,..- + . . . - - .-. 5 ...- .,. -,.. -+ + .. - . .

-, ,-.. - a, - - --.- - --,..-.- * ,-. ., ., U.o .--,. U., ., ,t', ,, ,' . . , -- 7,: .. ,, - " . . "' ' -;_ ' - - -. o . - ,, ,
'

.,

a .:

Valid/ t ommand
Invalid rable

Validate
Delete

i Command
1.2.3.5.1.4

Valid/ tl 'IValid/

Invalid Invalid

File 's Portno's
Username UsernameFilename I #Filename

ij.

Check Check

Filename Username

B'1 1

. L.2.3.5. 1i.i.2.3].5.1 .1 .2

4
'.'

',

-. "

.o,

~B-18

- %- ' - , U% = o % % '. ** ". .** - .. -,* -• - ,, -. -. ". - .

Filename File' s .Yalid/
User Invalid
name

Check
Filename

i 1.2.3.5.1-1-1

Valid/ 1 Valid/
Invalid Invalid

, -File's Username

File File 4
Descriptor Descriptor

Filename l

Open Get
File Username

1.2.3.5. 1.2.3.5.
1.1. 1. i Invalid 1...

Filename

Build
•... Error

Mes TS 3 5

B-19

*.'. ": .

* "*

File' s Portno' s Valid/

Username Username Invalid

Check
Username

k: 1.2.3.5.1.1.2

Invalid
User

Build Error
Message

1.2.3.5.

i-B-2

"p.

ao

,%B- 20

4t _ - . ° " , - " ' '.' - - . - . - . - ' ' . - , . " . - - - z ' - . . . ' - . ' . , ' - " , - ' . - ' . % % , . .

a.

A
SError Syntax
Flag Error

Build Error
Message

1.2.3.5.
1 .1.1.3

Error
Message

Transmit
Message

-1.2.3.1.2.1

IB'o2

,a)

"%-,

B-2

-* .%

.4.

-. - MP r

":':<* :" TCommand
__ " •'Table

' '_ Execute

- -" Command

.L.

- ComCommandm
Table

,Get Process
File Scheduler

1.2.3.5.2.1 1.2.3.5.2.2

bl

")

4.:.. ,,.

B-2

• . . " . . .,, ,. . , '-"-." '-"•'.' -",°. -" . -" .".%"-" '. ,"

"-: Command
Table

Get

4.File

1.2.3.5.2-.1

SF DcNo Space Available~~File Descriptor -

Command
Table File

Descriptor

Check Build Read uild Error
Space PCB File Message

1 11.2.3.5.
.2.3.5.2.1.1 1.2.3.5.2.1.2 1.2.3.5.2.1.3 1.1.1.3

B-23

4Q , ' T , . , , ' ' " " " " . . ' ' . . . " " " " " " " "
.4.:,.. / -. , / . .-... ,. .. ,,, -- ... , 'F 'y , - -'' -. , .' ,, _ - .,-- -; .. -

IComm and
~Table

Build PCB

1.2 .3.5.2 .1.2

PCB

Inser PCB
Into Queue

1.2.3.5.

2.1.2.1

-B-2

I FileJDescriptor

Check
Space1.2. 1.

Not-Too-Large/ Not-Too-Large/
"a.- Too-Large 0 Too-Large

Process Ordered

Memory Memory
Locations Locations

Sort MemoryB
Locations Build Error

1.2.3.5. Message
2.1-1.1 1.2.3.5.

.

a-'

-;

[... :B-25

4.. .. ,..-.
. . 4.4 ., -..--...

'... . .

- .4...Portno

Logout
•. User

1.2.3.2

Portno - Logged-out

I I
Clear User Build
Parameters Message

1.2.3.2.1
1.2.3.1.2

..

.4o..°

*4.

...

10

B-26

- '. 1.:essage Code

Build
Message

1.2.3.1.2

Message

Transmit
Message

1.2.3.1.2.1

*B- 27

.

. . . .- ... '..**.-

-

. a

, ;.Command T Table

Help
User
1.2.3.3

.

System Help Command Help

Get Get

System Command
Information Information

1.2.-33.1 1.2.3.3.2

System
Information Command

Information

'5,

'5 Build
Message

1.2.3.1.2

.

d B- 28

"4

. *-

I,"Command
Table

System
Change

Portno's

Username

p

Auth./ Superuser's
Unauth. Username Command
User { Table

Verify Buile PCB Proess
Authority Scheduler

1.23.4. 1 1.2.35.2.1.2 1.2.3.5.2.2

a?.-.-

-p... B-2

•-o.

.7-74 M. T

"- T Command
" ' .- Table

System
Change

.1.2.3.4

Portno's.V Username

Auth./ Superuser's Command
Unauth. Username Table
User

Verify Configure
Authority System

" 4"1.2.3.4.1 1.2.3.4.2

B,..

°°o °..

J.

.

-4-?.l : < :; T',-'.} " .: -"< .k "..: -, - - -'[.-".'.:. ... i "-."...... - .', ., , . .. --

4.7 '..

,a..

.. ''K- ~Authorized/ Portno's Superuser's
Unauthorized sername Username
User 1

*Verify
Authority
1.2..3.4.1

Portno' s
Username

Unauthorized User

3 Unauth. Superuser's
•User Username

Check User's Build Error
Authority Message

1.2.3.4.1.1 1..23.5.

'BJ31

a .. -.-

* ~B-3 1

"J' .'. - 2 * *-:.,-',-'- -,- -. '..-.,/ . *- .-- '--, -.- -.. , . * :.- :-' .*.-', .-', ..- ,.

ComimandITable

Configure
." system

: 1.2.3.4.2

' ,°;. N ew Sy stem

Information

System
Change Portno Portno

Build Read
MsgCommand",: Message

1.2.3.1.2 1.2.2.2

I.B.

,i

4.

'p.

,'... -..- , -.. '. .,..,.--. ,' . :' , .: '\,' -W ,. '

. b -7 *r" T.-. - - '

- Process
Scheduler

1/0 Wait Queue Process Aborted

PCBIPCB
Process 1/0 Get PCB Run Process Build Error
Wait Queue Message

1.2.3.5.
1.2.3.5.2.2.1 1.2.3.5.2.2.2 1.2.3.5.2.2.3 1.1.1.3

B-3

, , ., ".: -." , , . ,. ,.-.. .-

.-

*-
a-.

%' ,' I l/0 Wait
• I' Queue

Process I/0
Wait Queue

-.2.3.5.2.2.1

i I~/O Wait Queue-4--

gq

PCB PCB
t PPCB

Locateeete P Insert PCB
Unblocked From I/O Wait Into Queue
Processes Queue 1.2. 1.2.3.5.

"3.5.2.2 1.2 2.1.2.1

B-3

N7

A ... 2211

S, i .

4
q

A

%4

. B-3 4

i -h-' § v:c °'~9C~rC

A.1

-A.

-' PCB

Get
PCB

1.2.3.5.2.2.2

Queue Empty/Not Empty

Queue Number
PCB

Queue Number

Check Get PCB
Ready Queues From Queue

1.2.3.5. 1.2.3.5.2.2.2.1 2.2.2.2

B2

',

i B-35

" -I PCB

Run
Process

.2.3.5.2.2.3

PCB PCB PB PC I P

Send File Write File Deallocate

To Port To Secondary Aemory Space

1.2.3.5. Memory 1.2.3. 1.2.3.5.

2.2.3.1 5.2.2.3.2 2.2.3.3

Run System PRun

Change Program
2.2.3.

1.2.3.4.2
2.23.4

-.3

~B-36

- . . ' ,". -- ". - - -" " - - *-" .*** " " - J- . " .-. --" * * * -".* -- " .. -, , . -,'.

a.-.'j A. -- 3 -7 7 -
% -.---.-. *.7 . .-

I PC B
ClJ.ean-Up

Queue

'0..

Delete PC Delete PCB Delete PCB Deallocate
From 1/0 Wait From System, From ReadyQ1 Memory Space

10.11 0.20.1 2233

a-B-37

Le,.

% %,

'-. .-., ~ -. :7 .

Appendix C

Process Description for AMOS

-A This appendix contains the process description of
each structure module. The structure charts are located
in Appendix B.

PROCESS NAME: Execute Bootstrap Program
PROCESS NUMBER: 1.0
PROCESS DESCRIPTION: This process loads the operating
system from secondary memory into main memory. Upon
completion of this the operating system is then executed.

- . PROCESS NAME: Load AMOS Into Memory
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION: This process retrieves the operating
system from secondary memory and places into main memory.

PROCESS NAME: Execute AMOS
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION: This process executes the operating
system that has already been loaded into main memory.

PROCESS NAME: Initialize Data Base
PROCESS NUMBER: 1.2.1
PROCESS DESCRIPTION: This process sets the initial values
for specific data items used by the operating system.

PROCESS NAME: Parse Command Line
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION: This process polls the on-line
terminals, reads the next command line, and parses the
command line into a command table. Process scheduler is
called when terminals are idle.

PROCESS NAME: Determine Valid Command
PROCESS NUMBER: 1.2.3
PROCESS DESCRIPTION: This process determines the requested
command and then checks for validity. If the command is
found to be valid, it is then executed.

PROCESS NAME: Retrieve Data Base Information
PROCESS NUMBER: 1.2.1.1
PROCESS DESCRIPTION: This process retrieves the
information that is used to initialize the operating
system's variables.

C-1

S * - '.-o" -. . > * *' *°' .:

PROCESS NAME: Initialize Variables
PROCESS NUMBER: 1.2.1.2
PROCESS DESCRIPTION: This process initializes the
operating system's variables with the Data Base
information.

PROCESS NAME: Poll Terminal Ports
PROCESS NUMBER: 1.2.2.1
PROCESS DESCRIPTION: This process uses a algorithm to poll
the terminal ports to check for user requests.

PROCESS NAME: Read Command Line
PROCESS NUMBER: 1.2.2.2
PROCESS DESCRIPTION: This process reads the command line
from the given port.

PROCESS NAME: Build Command Table
PROCESS NUMBER: 1.2.2.3
PROCESS DESCRIPTION: This process oreaks the command line
into separate parameters. These parameters are then
placed into the command table.

PROCESS NAME: Log-in User
PROCESS NUMBER: 1.2.3.1
PROCESS DESCRIPTION: This process checks to see if the
user is already logged-in. If found to be logged-in, then
control is returned to calling module. Otherwise the user
is attempted to be logged-in. The user is prompted for
the username and password and reads the user's input. The
username and password are verified. If they are valid,
then the user block is initialized.

PROCESS NAME: Log-out User
PROCESS NUMBER: 1.2.3.2
PROCESS DESCRIPTION: This process clears the user block
for the terminal which the log-out command originated.

PROCESS NAME: Help User
PROCESS NUMBER: 1.2.3.3
PROCESS DESCRIPTION: This process provides the user with
the requested system or command information, if available.

PROCESS NAME: System Change
PROCESS NUMBER: 1.2.3.4
PROCESS DESCRIPTION: This process verifies that the user
is the 'Superuser.' If found to be the 'Superuser,' then
the system is reconfigured with the changes specified by
the 'Superuser.'

C-2

* .a

PROCESS NAME: Execute User Command

PROCESS NUMBER: 1.2.3.5
PROCESS DESCRIPTION: This process determines if the
specified user command is valid. If the command is valid,
the command is then placed into main memory for execution.

PROCESS NAME: Set-up User Parameters
S.-. PROCESS NUMBER: 1.2.3.1.1

PROCESS DESCRIPTION: This process initializes the user
block parameters.

PROCESS NAME: Build Message
PROCESS NUMBER: 1.2.3.1.2
PROCESS DESCRIPTION: This process constructs a message to
be sent to a user and calls the Transmit Message module.

PROCESS NAME: Clear User Parameters
PROCESS NUMBER: 1.2.3.2.1
PROCESS DESCRIPTION: This process clears the user block
parameters for the terminal which the log-out command
originated.

PROCESS NAME: Get System Information
PROCESS NUMBER: 1.2.3.3.1
PROCESS DESCRIPTION: This process retrieves the requested
system information and sends the information to the user.

PROCESS NAME: Get Command Information
PROCESS NUMBER: 1.2.3.3.2
PROCESS DESCRIPTION: This process retrieves the requested
command information and sends the information to the user.

PROCESS NAME: Verify Authority
PROCESS NUMBER: 1.2.3.4.1
PROCESS DESCRIPTION: This process verifies that the user
is the 'Superuser.'

PROCESS NAME: Configure System
PROCESS NUMBER: 1.2.3.4.2
PROCESS DESCRIPTION: This process configures the system's
Data Base with the new information that is given by the
'Superuser.'

PROCESS NAME: Validate User Command
PROCESS NUMBER: 1.2.3.5.1
PROCESS DESCRIPTION: This process checks for validity of

". the specified user command (i.e. RUN, LIST, PRINT, DEL,
and DIR).

C-3

PROCESS NAME: Execute Command
PROCESS NUMBER: 1.2.3.5.2
PROCESS DESCRIPTION: This process retrieves a file and
calls the Process Scheduler module for execution.

PROCESS NAME: Check User
PROCESS NUMBER: 1.2.3.1.1.1
PROCESS DESCRIPTION: This process checks the user table to
determine if the user is allowed system access.

PROCESS NAME: Transmit Message
PROCESS NUMBER: 1.2.3.1.2.1
PROCESS DESCRIPTION: This process sends a message to the
user.

PROCESS NAME: Check User Authority
PROCESS NUMBER: 1.2.3.4.1.1
PROCESS DESCRIPTION: This process checks to see if the
user is the 'Superuser.'

PROCESS NAME: Validate Run Command
PROCESS NUMBER: 1.2.3.5.1.1
PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate List Command
PROCESS NUMBER: 1.2.3.5.1.2
PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate Print Command
PROCESS NUMBER: 1.2.3.S.1.3
PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME: Validate Delete Command
PROCESS NUMBER: 1.2.3.5.1.4
PROCESS DESCRIPTION: This process checks the username and
the file for validity.

PROCESS NAME:Get File
PROCESS NUMBER: 1.2.3.5.2.1
PROCESS DESCRIPTION: This process checks the space,
retrieves a file from secondary memory, places into main
memory, and builds a Process Control Block.

C-4

PROCESS NAME: Process Scheduler
S "PROCESS NUMBER: 1.2.3.5.2.2

PROCESS DESCRIPTION: This process retrieves the unblocked
Process Control Blocks in the I/O Wait Queue and places
them into the Ready Queue, gets the next process to be
executed, and executes the process. If there is no
process that is ready to run, then control is returned to
the calling module.

PROCESS NAME: Check Filename
PROCESS NUMBER: 1.2.3.5.1.1.1
PROCESS DESCRIPTION: This process determines if a file is
located in secondary memory.

PROCESS NAME: Check Username
PROCESS NUMBER: 1.2.3.5.1.1.2
PROCESS DESCRIPTION: This process determines if the user
has authority to access the file.

PROCESS NAME: Check Run Filename
PROCESS NUMBER: 1.2.3.5.1.1.3
PROCESS DESCRIPTION: This process determines if a file is
an executable file.
PROCESS NAME: Check Space
PROCESS NUMBER: 1.2.3.5.2.1.1

PROCESS DESCRIPTION: This process determines if there
- exists enough space for an incoming file.

PROCESS NAME: Build PCB
* PROCESS NUMBER: 1.2.3.5.2.1.2

PROCESS DESCRIPTION: This process builds a Process Control
Block for the command.

PROCESS NAME: Read File
PROCESS NUMBER: 1.2.3.5.2.1.3
PROCESS DESCRIPTION: This process reads a file from
secondary memory and places it into main memory.

PROCESS NAME: Process I/O Wait Queue
PROCESS NUMBER: 1.2.3.5.2.2.1
PROCESS DESCRIPTION: This process takes those processes
that are finished with their I/O wait out of the I/O Wait
Queue and places them into the appropriate Ready Queue.

PROCESS NAME: Get PCB
PROCESS NUMBER: 1.2.3.5.2.2.2
PROCESS DESCRIPTION: This process retrieves the PCB of the
next ready process to executed.

d

C-5

" ~~~~~...- .- :P .! . ., .,....... *- '

PROCESS NAME: Run Process
PROCESS NUMBER: 1.2.3.5.2.2.3
PROCESS DESCRIPTION: This process executes the process of
the given PCB.

PROCESS NAME: Open File
PROCESS NUMBER: 1.2.3.5.1.1.1.1
PROCESS DESCRIPTION: This process opens a file located in
secondary memory for reading and writing.

PROCESS NAME: Get Username
PROCESS NUMBER: 1.2.3.5.1.1.1.2
PROCESS DESCRIPTION: This process gets the username of the
requested file.

PROCESS NAME: Build Error Message
PROCESS NUMBER: 1.2.3.5.1.1.1.3
PROCESS DESCRIPTION: This process constructs an error
message that is the transmitted to the user.

PROCESS NAME: Sort Memory Locations
PROCESS NUMBER: 1.2.3.5.2.1.1.1
PROCESS DESCRIPTION: This process arranges the memory

*. locations of all jobs in main memory from smallest to
largest.

* P PROCESS NAME: Insert PCB
PROCESS NUMBER: 1.2.3.5.2.1.2.1
PROCESS DESCRIPTION: This process inserts the given PCB
into the appropriate queue.

PROCESS NAME: Locate Unblocked Processes
PROCESS NUMBER: 1.2.3.5.2.2.1.1
PROCESS DESCRIPTION: This process locates all PCBs in the
I/O Wait Queue that are no longer in an I/O wait state.

PROCESS NAME: Delete PCB From I/O Wait Queue
PROCESS NUMBER: 1.2.3.5.2.2.1.2
PROCESS DESCRIPTION: This process deletes the given PCBs
from the I/O Wait Queue.

PROCESS NAME: Check Ready Queue
PROCESS NUMBER: 1.2.3.5.2.2.2.1
PROCESS DESCRIPTION: This process checks the Ready Queues
for a ready PCB and returns the Ready Queue's number.

PROCESS NAME: Get PCB From Queue
PROCESS NUMBER: 1.2.3.5.2.2.2.2
PROCESS DESCRIPTION: This process retrieves the PCB from
the given Ready Queue.

C-6

* o-*.-% .--

~~1 P 1. - A - b - . - S - .-. 1

Appendix D

Data Dictionary for AMOS

This appendix contains the data flow entrys that are
passed between the structure chart modules. The structure
charts are located in Appendix B.C

1. DATA NAME: AMOS

VThis is the object code of the operating system.
It is transferred to main memory (at a set location)

*. from secondary memory.

2. DATA NAME: AMOS-Global-Variables

These are the data items that are used by the
operating system and contains all of the data flow
items.

3. DATA NAME: Authorized/Unauthorized-User
ALIASES: Error-Flag

This is a flag that informs the operating system
__ that the user, who is requesting a system command

operation, is or is not the 'Superuser.'

4. DATA NAME: Command-Help

This is a request for command information.

5. DATA NAME: Command-Information

This is the command information that was
requested by the user

6. DATA NAME: Command-Line
ALIASES: New-System-Information

The data sent to the operating system by the
, user that is terminated by a carriage return. It

will contain a command and any necessary parameters.

7. DATA NAME: Command-Table

All of the parameters from the Command Line (6)
and any other parameters that are acquired by any
promting routine.

D-1

*.'S**, . * , .. ' .. .**. -. ..- ~ j ; . ' .~ - ~*.-- %~

8. DATA NAME: Data-Base-Information

These are the initial values that the
AMOS-Global-Variables (2) are set.

9. DATA NAME: Error-Flag

This is a fiag that is sent to the Error routine
to build an Error-Message (10).

10. DATA NAME: Error-Message

This is a message informing the user that an
error has occurred and what it was.

11. DATA NAME: Filename

This is the name of a file that has an operation
that is to be performed on it. (such as Run or List)

12. DATA NAME: File-Descriptor

This is an integer indicating where the file is
• located in a buffer of all open files.

13. DATA NAME: File's-Username

- This is the username of the file that is being
requested by a user.

14. DATA NAME: I/O-Wait-Queue

This is the pointer to the I/O Wait Queue.

15. DATA NAME: Legal/Illegal-User
ALIASES: Error-Flag

This is a flag indicating that the user has
access, or doesn't have access, to AMOS.

16. DATA NAME: Logged-In
ALIASES: Message-Code

This is a flag indicating that the user has been
properly logged-in.

17. DATA NAME: Logged-Out
ALIASES: Message-Code

This is a flag indicating that the user has been
properly logged-out.

D-2

V)?.

-p.-

.18. DATA NAME: Memory-Location

The location in main memory that a file is

located or is being sent.

19. DATA NAME: Message-Code

This is a flag that is used by the Build Message
routine to build a message that is sent to the user.

20. DATA NAME: No-Space-Available
ALIASES: Error-Flag

This is a flag indicating that there isn't
ex-ugh available memory space for the execution of
the process.

21. DATA NAME: Ordered-Memory-Locations

This is the table of the available memory
partitions ordered by size and is used by the Memory
Manager.

22. DATA NAME: Password

This is the user's unique key to the operating
system. It can be changed by the user and is entered
by the user.

23. DATA NAME: PCB (Process Control Block)

This is a table that is used by the Process
Manager to keep track of all the processes that are
submitted to run.

24. DATA NAME: Portno

The port number that a message is being sent or
a command is being received.

25. DATA NAME: Process-Aborted
ALIASES: Error-Flag

This is a flag that is sent to the user
- . indicating that the submitted process was aborted.

26. DATA NAME: Process-Memory-Locations

This is the table of unordered available memory
partitions.

D-3

-U.

27. DATA NAME: Program-Too-Large-For-Memory
ALIASES: Not-Too-Large/Too-Large,

Error-Flag

This is a flag to indicate to the Memory Manager
that the incoming file is not small enough for all of
main memory.

28. DATA NAME: Prompt
ALIASES: Message, System-Change

This is a message to the user to indicate that
information is to be entered. This information can
include the Username (34) or Password (22).

29. DATA NAME: Queues-Empty/Not-Empty

This is a flag indicating that the Ready Queues
are empty, or not empty.

30. DATA NAME: Queue-Number

This is a number that indicates to the Process
Manager which Ready Queue has the next process to
run.

31. DATA NAME: Syntax-Error
ALIASES: Error-Flag

This is a control flag to indicate that a
command is not found. This control flag is
transmitted to an error handling routine.

32. DATA NAME: System-Help

This is a request for system information.

33. DATA NAME: System-Information

This is the system information that was
requested by the user.

34. DATA NAME: Username
ALIASES: Portno's-Username,

Superuser's-Username

This is the user's indentification used to log
onto the operating system. It cannot be changed by
the user and is entered by the system's 'Superuser.'

D-4

*IS.

- *.-. 35. DATA NAME: Valid/Invalid-Filename
ALIASES: Error-Flag

This is a flag that indicates that the file the
user has requested an operation on exists, or doesn't
exist.

36. DATA NAME: Valid/Invalid-Username
ALIASES: Error-Flag

This is a flag that indicated that the file the
user is requesting is, or isn't, their file.

-D.

,%0

n..4

'4 D-5

-'. . .. '. ,' .' . ', "*', ,, - ,-','v ,','v - %',,, - .". , .-. , ,".** . . *:.: " .: .-"',,, '''''''': - ,.,,

a t A *t - -'-' 7.- -. -

Appendix E

AMOS Source Code

This appendix contains the source code for AMOS. It

is in the file AMOS.C on the VMS O/S's disk storage. The

documentation in the code consists of a header for each

subroutine and comments throughout the C language code.

The header is based on Dr. Gary Lamont's standards that

were given in EE 6.86, Information Structures.

E-.

a-..

• ,'.dE-I

.1.

io .

/* Title: AMOS: AFIT Multiprogramming Operating System */

1* Date: 31 August 1983
/* Version: 1.0

/* Filename: AMOS.C */
/* Function: This is a multiprogramming operating system */
/* for sixteen-bit microprocessor systems. *1
/* Calling Subroutines: When implemented on a micro- */
1* processing system, a boot program will load
1 * this O/S and will proceed to execute the O/S */
/* Authors: Paul E. Cruser and Ronald K. Miller

#dein /,erse OUE W *tiisheupres */

/**so

#dfn l**/CRS * srae o istue*

./-**

qc /* The following is the Global Data Base that will be *

#ef* used throughout the operating systenm. */

#efinclude stdioGh /* standard input- fotput library */
#define superuser 4P " /* this is the superusers*/

* / usern ame */
#define sprpass "OKNBEAK /* this is the superusers */
d-- ueve pasword#define berl S /* userfmerfor foirst user*/
#define eMLR /*username for second user/
#define passl 1GCS-83D /* password for first user*/
$",-.[#define pass2 LJ /*password for second user *
#define noports 4 /* this is the nmnber of online *

1* teminal Ports "1
-*' #define dviceports 0 /* this is the number of online */

/* device ports *
#define begin { /* ersonal preference for
#define end} 1/* easier coding */
#define B INUSER 13 /* used in the directory to mark */

/* the column
#define BUFSER 20 /* of the beginning and ending */
"f /* of the usernme */. define DIMP 0 /* Directory track number */
tdef ine DIREI 0 /* Directory sector number *

#define B - /* file can't be opened flag */def ine NtOSEC 16 /* nuttber of sectors on a disk */
I' def ine LJ' 40 /* number of buffer r~s for the*/

1:: * directory "1
" %define BJFSIZ.E 24 /* number of buffer coltm f.t.d*/
"* def ins !'SSIZE 40 /* size of the message */

#def ins BEGSIZE 23 /* byte location of file size */

/* found in the directory buffer*/

E-2

• . . .o .O • . . • o * . -

'..7.

#define BEGTRACK 21 /* byte location of the first */i [iJ /* track in the directory buffer*/

#define BEGSECTOR 22 /* byte location of first sector*/
/* in the directory buffer

#define OFFSET 40 /* ASCII offset
#define K9XJOBS 4 /* Maximum no. of jcbs allowed */

1* on the system *
#define AMIZE 12 /* The size of a filename
#define DISKSTAT 0 /* The disk status bit
#define DISUM 0 /* The disk ready bit
#define DISKPORM 0 I* The disk dataport *I
#define (OMMIZE 5 /* The max size of a command */
#define PARASIZE 12 /* The max size of a parameter *1
#define BAE..ADIR S 200 /* Start address of user memory */
#define IOPDIRESS 0xFFFF /* End address of main memory */
#define BITSIZE 128 /* Number of bytes in a block */

/* from the disk

/* the following structure defines the process control */
/* blocks temppc± and pcb[] are pc± that will be used by */
/* the scheduler

struct z8pcb {
struct z8pcb *next-cb,

/* next pcb in the queue */
previousd);
/* previous prb in the queue

int priority,
/* used to determine queue to put into */

/* 0: system queue *1
/* 1: readyl queue */

U /* etc. */

current_q,
/* indicates what queue it resides in */

/* 0: system queue */
/* 1: readyl queue */
/* etc. *
/* -1: i/o wait queue */

process-data,
/* to be used in later implementation */
/* for the address of data workspace */
/* for the process */

offset,_address,
U.. /* where the beginning address of */

/* allocated memory is located */
* ..~.. finaladdress,

1%- ": 9-3

"ii.... . . , ..,. ~', . " . - .-.... . . .,. . . .

/* where the final address of the *
/* allocated memory is located */

con"type
/* this is set to tell the system what */
/* kind of comnand is being executed */

/* -1: SYS command *
* 0: UN ommand *

/* 1: LIST ccmmand */
I* 2: PRINT cmand *
I* 3: DEL cmmand *
/* 4: DIR command */
/* 5: MIT ccmmand */
/* note: MDIT isn't available */
/* and others may be added as*/
/* they are needed */

port,...oorigin,,
/* port number that the pcb's process */
/* originated from *1

iostatus;
/* indicates if process is in an io wait */
/* or not, and determines if the process */
/* should be taken out of the io waitq *
1 , I* 0: not waiting for io *1
/* 1: waiting for io */

pcb[noportsj

/* the following is the headers for the I/0 Wait queue */
/* and the Ready queue. This is where other queues */
/* would be defined when they are added later. */

struct qheader {
struct z8pcb *strt,

/* pointer to first pcb in list */
*endilng

/* pointer to last pcb in list */

int qcount;

. iowaitq, /* header for I/O Wait queue */
systamg, /* header for system ready queue */
readylq; /* header for readyl queue */

"1 * the following structure defines the ports' data table */

struct portdata
int statport,

.-K:-" /* this is the status port address */

a. E-4

dataport,/* this is the data port address

sendbit,
/* this is the send bit mask */

recvbit;
/* this is the receive bit mask */

ports[noports+l 1; /* ports' data table */
/* the noports+l ports will be for */
/* the printer port information */

/* the following structure defines the device table

struct dev_table {
char device...tye[lO];

1* used in the SYS DEV */
/* to indicate what the */
/* device is */

int controlport,
/* the address of the control port */
portodata;
/* the address of the data port */

device_table[deviceports];

/* the following structure defines the terminal-user table */

struct userblock f
int loggedon, /* the logged on flag: */

jcbrLnming; /* is a job running: */
O-m,l-yes */

char userm[8]; /* the logged on user */

userblocks [noports];

/* the userblocks' subscript (noports) will be used to */
/* indicate which terminal is being used by the userrnm[] *

4.

-./ the following structure defines the usertable */
1 * usertable[] is the table

struct usrtable (
char username(8]

Password [81;}
usertable[40];

/* the following structure defines the delete table */
-~. /* this table is used to delete files that users

. .. /* want deleted that are on the same sector/track */

E-5

4,.v 'l l ,J ''' . '''' '-' .. . " . " .. . " " - - - - . - - . . - . . • - . . - , . . .

/* this will save tinre writing to the disk and will *
/* also prevent overwrite *

struct del-..table{
mt track, sector, /* track and sector .

portno[MAXJOBS],, /* port numibers of */
* 1* jobs using delete for *
* 1* this sector and track *

deLjxount,
/* rnumber of deletes to perform,*
/' for this track and sector *

/* array of the rows to be *
/* deleted on the given track*/
-* and sector */

delete-table[MAXJOBS];

/* the follwing are various integer and character
/* declarations used throughout the system

int pollportnop
S* current port which polling routine starts */

portno,
* current port nu rer that is being accessed *

(it. no-users..cut-sys,
/ numb/er of users currently on the system *1

no..._usersp
/* nutmer of users that can access the system */

cr /* code for user comiand type *

1* 2: LIST *
3: PRINT

/~4: DEL (Delete) *
c o 5: DIR (Directory) a/

/mory oc, u* The menory location for a file*/
fd, /* file descriptor used on opened files */
finished- /* boolean indicating entire file

/* ha *been/re
size, / numb"er of blocks used by a filet) *
dtrack, directory track to read
dsector, /* directory sector to read */
deltrack, /* dir track of file for deletion*/
del_sector, /* dir sector of file for delet. */
numberjobs,/* number of jobs in main memory */
begin_address[MAXJCBS+lJ, /* beginning addr. */

/* of each jobs main memory allocation */
* -enaddress[MXCBS], 1* end addr. of each */

/* jobs main memory allocation */

E-6

......................... i

order[MAXJOBS+l] ; /* indices of the sorted */
/* beginning addr. location*/

char co/mandjine[321, 1* ccnmuiand line entered by */
/* the user */

file_username [8] ,/*username of requested file*/
opene files[4 [32], /* info of opened files*/
name [12], /* filename fram the directory */
file[12], /* filename sent fram the user */
message[MESSIZE]; /* message tcbe transmitted*/

/* the following is the structure definition for the */
/* comand table which will be used through the validation*/
/* of the command and setting up of the pbs

struct cmnntable {
char ccmgand [81,

parameterl[12],
p•rameter2[12];

V. int numraram;
/* 0=only acomand*
/* 1 = one param plus cmand*/
/* 2 = two param plus cmand*/

A /* int terminal; this may be used, but portno */
/* should be used with no forseeable problem */

command&table;

--

"-'" E-7

1* MAI*

1* Date: 31 August 1983 *
1* Version: 1.0 *

2 Name: manI
Module Number: 1.2 *

1* Function: This is the module that initializes the data *
base, monitors the consoles and validates the

+commands.

-. ,. : : * *,1

1* Calling Modules: None *
1* Modules Called: initial ize-dataJoiase, ppomuIiine,

/* and det./valicxxm

1* *//

Gl/*al Variables Used: None*1
* Gbal Variables Changed: None*

Author: Paul E. Cruser and Ronald K. Miller *
ys* atem: VAX 11/780, VM 0S and UNIX: for testing, only I

win(
begin

initialze dat4base 0;
for (;;)

begin
p/oCmLline,*
det. .valicjxx.nom

end
- - end

/E-8

A;-: * */ .'~ % ..

* . - . - . L * - ,. . . - . . * -. % . .•. .. o . . .

" * INITIALIZE DATA BASE

Date: 1 September 1983 *
" * Version: 1.0

1* , Name: initialize_datajbase */
""/* Module Number: 1.2.1

Function: To enter those initial parameters, that are */
/* necessary for the operation of the o/s, into */
• .1 * the data base. */1,* *1
1. * Calling Modules: main *1
1 * Modules Called: none *//* *1
/* Global Variables Used: temppcb, pcb [, ports[], *
/* userblocks[], usertable [],
1*nousers-cn..sys, and noofusers */

.4 / Global Variables Changed: all of the ones used

Author: Paul E. Cruser *I
/-' 1* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */1* */

initializedatamse(0
.,.. begin' int count;

/* the following are initialization of the status & data ports' */
/* addresses and the masks for the send and receive bits
/* ports 0-3 are console ports; port 4 is a printer port */

ports[0] .statport - 0;
ports[0].dataport = 0;
ports[0].sendbit - 0;
ports[0] .recvbit = 0;
ports[l] .statport = 0;
ports[l] .dataport = 0;
ports[l].sendbit = 0;
ports[l].recvbit = 0;
ports[2] .statport = 0;
ports[2] .dataport - 0;
ports[2] .sendbit = 0;
ports[2].recvbit - 0;
ports[3] .statport - 0;
ports[3] .dataport = 0;

..., ports[3] .sendbit = 0;
ports[3] .recvbit - 0;
ports[4] .statport = 0;
ports[4] .dataport - 0;

.-ports[4].sendbit - 0;
ports[4] .recvbit = 0;

E-9

. .. . , , ,_ . ' , . . , , ..- .- , a . -*.* -- .,.-. . -. ..'. . .. - ,. , A'. ,

/* when more ports are made available, then they are to */
/* be added on to this initialization list */

/* the following is the initialization of the status bits of */
/* the userblocks (the structures that tell the system who is */

/ logged onto which terminal)
/* the loggedon and jobruning will both be initialized to 0 */

count - 0;
while (count < noports)

begin
userblocks [count] .loggedon - 0;
userblocks [count] .jobnrmning - 0;
count - count + 1;

end

/* the following is the initialization of the usernames */
/* and the passwords */

strcpy(usertable [0] .usernme,superuser);
strcpy (usertable [O] .password, sppass);
strcpy(usertable[I] .Uername,userl);
strcpy(usertable [1] .plsword,lasl);
strcpy(usertable [21 .usernme,user2);
strcpy (usertable [2] .password, Pss2);

/* etc. */

/* the following is the initialization of the queue counter for */
* . /* the 1/o wait, System, and Readyl queues */

iowaitq.qcount - 0;
systemq.qcoount - 0;
readylq.qcount - 0;

/* the following initializations are for: */
/* number of users, which is currently 3
/* number of users on the system, which is 0
/* number of job on the system, which is0 *
/* portno, set to the first port - 0
/* the portno will be changed in the polling routine */
/* the number of users on the system will change as the users */
/* log on and off of the system

noofusers - 3;
nouserscrLitny 0;
nuberJobs - 0;
portno - 0;
poll-portno - 0;

/* the following is the initialization of the begin address */
/* and end address of the available memory space. These are */
/* used to allocate and deallocate memory (Memory Mgt.) */

E-10

~~~~~~~~~~~~~~~~. './...' :. '.'.......'. ;.. .... .. . .......... ............ '.......".. • ..* - . .~ . . . - *. .-



begirnaddress [MWCBS] = TOPMIPES;
end-adress [MAXJOBS] MPMUS

return(1);

end /* the end of the initialization subroutine *

E-11



.L "- ,' * :.. . . o ... , .- - .. ,. .. . -. . . . . . . -. - . . . -. . . - .- j...-.

*.,.

1* LOGIN-USER/* *1
"* Date: 13 September 1983
-" * Version: 1.1 */1-" * */

Nm: login--user *
Module Number: 1.2.3.1

* unction: This module will determine if the user is */
-: . /* - to log onto the systm and then enters the */

/* his usernme into the userblock table.* .1: 1* *1
1* Calling modules: det-.vali& tu *I* Modules Called: buildjissage, get..pxandline, error, */

/* checkuser, and strCpy *
i" /*

1*, Global Variables Used: userblocks [ .userm, portno, *
*/, userblocks[].loggedon, */

4. 1* no_usersonsys, *
and ccuuuandline

/* Global Variables Changed: userblocksC] .usern a */I* no_users_ansqy *I
1" * */

Author: Paul E. Cruser *I
/* System: VAX 11/780,, VMS Q/S and UNIX OIS: testing, only*/

login-user()
begin
#define unmessage 6
#define pimessage 7
#define illegal-user 4
#define logirLnomplete 9

,R:I. . nt i,j;
char un[8],

pWiES;

if (userblocks [portno] .loggedon - 0)
begin

luildjmosage (umessage): /* username promp *
getcmman-lineO; /* get the username from the user */
i - 0;
while (i < 8) /* take the username from the cam line */

-.. if (oouxULine[i] I= 'VI')
-.''-. unlil - commimtie[i);

else
begin I* fill the rest of un[] with blanks */

for (J-i;7;j++)
until- '

E-12

" ..



end

buildmessage (pnessage) /* password prompt */
get.cmiand_line 0; /* get the password fram the user */

while (i < 8) /* take the password from the cam line */
if (command&ine(il] t- 'I')
.nM [i]- cmuand._line[i];
else

begin /* fil the rest of [ with blanks*/
for (j-i;7;j++

um(i] = '
.1 1-8;

end

if (checkuser (un,iw))
bi /* check to see if user can get on system */
/* copy the necessary data into the next available

,I /* user block
strcpy(userblocks [no-users_crLsys] .userrn,un);
userblocks [nousers_.cnsys] .loggedon - 1;
nouserson.sys 4- 1;

, build-jessage (logir.o..cplete) I
return(l) ; /* one returned if login successful */

end
else

Sbegin
/* send illegal user message to the console trying */
/* to login *

error(illegaluser);
return(O); /* zero returned if login unsuccessful *I

/* ie. wrong password or invalid user name */
end

4 end
else
return(2); I* two returned if login not necessary *I

/* ie. the user is already logged on
end

-" E-13



~. 4~ - ... . .

Dae Spebe 98

Vesin 1.0

M dte 1Neumber 183

'no' Th*1rngwl ese sape

1* Name: lcaution. *
Caln Modulese: 1.2.3.2 *1cm

GlFuon Torilear ted userbiock o te usandm nd
Glba torabls theanogedon and jcbrusndigfag o *

Autor PalE.Cm
Callin AXg 378gV Modles davliun UNX*1 esigol

Mdfn ouesae b8ljesge tcy*

/* Glol VarblesUseer~locs poto-n
1* nolckusers.Jxusysedo = 0
1* Goa aibe ine:userblockstprnljbun and;
nouer*n~y nouers....n.sys -*1

4 oguildmsaer()tmsag)
ben(1

edfrelgunrg

mtE i4



: ' .- .1 : 1 * * /
PARSE MMAND LINE *

1* Date: 13 September 1983 */
/* Version: 1.1 */"-1* */
1*"Name: pmulne *I

Module Number: 1.2.2 */
.*, /* Function: To retrieve the data line that is entered by */

" /* at a terminal. 7he lower case letters wil *
then be changed to upper case, only for the */

1* coimmand and not the parameters *

Calling Modules: main */
modules Called: getcmanline, build_mprse-table, */

1 /* process_scheduler, poll */1: * *1
Global Variables Used: none */
Global Variables Used: none *//* */
Author: Paul E. Cruser */

-/* System: VAX 11/780, VMS 0/S and UNIX 0/S: testing only */"1 * *I

#define process_abort 9
#define processing- ne 10

if (poll))
begin

get_cmmndline 0 /* get cam line from the user */
buill.parsetableo0; /* have the coma line parsed and */

-r"-: /* saved */
else

if (Iprocess-.scheduler()
error (processtabort);

'I else
build-uessage (processing-done);

end

.1

,"'- E-'15

', 
°-

'-- ~ V\ .5~''~ .. . . . . . . . . . . . . . . . . . . . . . .



-- ', / ******************************** */
""" * P J *1

/* *

/* Date: 11 October 1963 */
a; /* Version: 1.1 */

I* Name: poll
1i /* Module Number: 1.2.2.1 */
* Function: To poll the ports that the users consoles */

will be conimmicating through. It will */
/* return a 1 if a port is sending something */
* or a 0 if it has checked each port once and */

has not gotten a response from any of them *//* *
1* Calling Modules: p-ovmiLline *1

Modules Called: none *1

1* Global Variables Used: portno, ports[] */
Global Variables Changed: portno */

Author: Paul E. Cruser */
°,., /* System: VAX 11/780, VS 01S and UNIX O/S: testing only */

:' poll()
begin
1%mt pno, /* temporary port number variable

yes, /* flag to tell if a port needs to be tended to*/
. counter, /* count how many ports have been checked */

tenpstat, /* temp. storage for the status ports' contents */
rstat; I* status byte masked */

yes=0;
counter - 0;

-pno - pollportno;
a,. while (lyes)

while ((counter < noports) && (Iyes))
begin

if (userblocks[ po] .jobrunning 1- 1)
begin

rstat - (inp(portslpno] .statport) & ports[pno] .recvbit);
if (rstat - 0)
begin
yes =
portno = pno
return(1)i

end
else if(pno - noports-1)

;no= 0;
else

a *Z o * pno + 1;

E-16

. , -* _ * **-.'. aP ..



end
counter += 1;

end
return(O);

end

4E.1.

4.

"p.

'V

4 . . :' -

.1*



1" SYSTE?4_QaNGE *//* */

.. * Date: 3 September 1983 *
1-. * Version: 1.0 *1

/* Name: system-change
Module Niuber: 1.2.3.4 *

/* Function: This will verify that the user is authorized */
/* to make the system changes that are requested */

and then makes those changes using a menu
* ystemifa menuis needed. */. * */

Calling Modules: detvalid_com*
Modules Called: build_pcb, error, adduser, and deluser */

"* Global Variables Used: superuser, userblocks[] .username, */
-I* portno *1
• * G'obal Variables Changed: none */-1 * *I

Author: Paul E. Cruser */
-- /* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */4'k. /* *1

'i

systeoLchange)
begin
.define not-superuser 5
char *systencomm

if (stringcmp(superuser,userblocks [portno] .userm))
- - begin

kaild..pcb (-l)i
systenmcmI ="A SR
if (stringcmp(systemcmn n&._table.parameterl))

addusero)
else
begin

system-- -lown"DE ;
if (stringcmp (systecmnm, conmandtable .parameterl))

deluseroi
else
begin

-< /* to be updated when other coumands */
/* are necessary for the systen *

'.-- end /* last else */
end /*previous else */

-. end /* f*irst if
4' else

,';-2 error (not_superuser);
end

E-18

F". ; , *".-" .-"- . - . - . - - -.- .- ".. " .- ' . -- --. v . -. -. ., -. .. -... " ,- .. . . -.- * .-. .



"O .'......----.- -'.--..-.7'----.'  -. .. . . 7
•.

-1* HELP-USER
/* *1

I* Date: 3 September 1983
/* Version: 1.0I* *1
.1 /* Name: helpuser */
/* Module Nimber: 1.2.3.3
/* Function: This checks to see if the help can be pro- */
-* vided and gives out the information or a
-1 /* message is sent to the user that no info is */

available.

1 /* Calling Modules: det_valid_cmm */
Modules Called: buil4_message, stringcmp, users-an line */

and devicesavailable */

S* Glcbal Variables Used: portno, usertable */
Global Variables Changed: none */I* *I
Author: Paul E. Cruser */

1* System: VAX 11/780, VN.S O/S and UNIX O/S: testing only */

helpuser()
begin
#define no.help 0
#define run_format 1
#define list_format 2
#define print-format 3
#define delete-format 4
#define directory-format 5
int help_set;
char *users, *devices, *n ,*list,*print, *elete, *di rectory;

users = OUSERS"; /* request to list the users on the system */
devices - "DEV"; /* request to list the devices on-line
run MR WN; /* req. to show the format for run com. */
list -"LIST"; /* req. to show the format for list com. */
print *PRINT"; /* req. to show the format for print cm. */
delete - IDEL"I /* req. to show the format for delete comm. /
directory - "DIR"; /* req. to show the format for dir. comn. */
help.s-et - 0Y
if (stringcmp(users,c m xLtable.prameterl))

helpset - 1; 1* system inquiry *
else
if (stringcmp (devices rcmmand-table.rameterl))

help_set - 2; /* system inquiry */
else
if (stringcmp (run,comnancLtable. prameterl))

helpset = 3; /* command inquiry */

E-19



else
* . .- ~ if (stringcmp(list,command_table.parameterl))

belp..set = 4; /* command inquiry *
else
if (stringcmp(printcomn&table.pramieterl))

help..et =5; /* ccninand inqui ry *
else

* if (stringcmp(delete~conmnanLtable.paramleter1))
help-..set - 6; /* caqmand inquiry *

else
if (stringcmp(directory,aaimand-table.parameterl))

helpset = 7; /* ccmrand inquiry *
switch (help-..set)

4- begin
case 0: buildjiessage (nqojelp);
case 1: users..cwi.line()
case 2: devices~available 0;4case 3: buildjressage (run-format);
case 4: buildjressage (list-format);
case 5: buildjrissage (print-jormat);
case 6: build-message (delete..format);
case 7: buildjiessage (directory.fiormat);
default: buildj;mssage (noJ-ep);

end
end

E-2



6. .S * a - a - a .-.. . .* m. ,, o . .-- mo ,-o-.*.-

ADI)USER *

SI* Date: 7 September 1983 *
1* Version: 1.0 */

/* Nae: adduser *
Module Nuber: 1.2.3.4.2A */

/* Function: Adds a new user's username and password *1I* *I
Calling Modules: systea.change */
Modules Called: none *1

ib *
/* Global Variables Used: noof_users, usertable *//* Global Variables Changed: no..of_users, usertable */

Author: Paul E. Cruser *1
1* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */

*: /* *1

adduser ()
* begin

#define blank ' '
int c.'t;

no ofusers 4- 1;
cnt - 0;
while (nt <- 7)
begin

cnt +- 1;
/* read in the username into */
/* usertable[no_of_users-l] .username */

"" ' end

cnt = 0;
while (cnt <= 7)

begin
usertable [no_ofusers-i] .password [ant] = blank;
cnt 4- 1;

end
end

2 -1

, *o. •E-21.

, - , , - . ,_. , . , - r k . . : _ o_- • - ., , , . . . . . :. , a ,, ,, , . 'a , ,



" * D..UELJSER t1i * */

,.*.Date: 7 September 1963 *
1* Version: 1.0 *I

1 I* Name: deluser */
Module Number: 1.2.3.4.2B .1

/* Function: Delete a user's usernane and password from */
the usertable ,1/* *1

Calling odules: system-change *
Modules Called: none *I1* */1

Global Variables Used: noofpusers, usertable */
Global Variables Changed: no_of_users, usertable */1!: * */

Author: Paul E. Cruser */
/* System: VAX 11/780, VM O/S and UNIX O/S: testing only */

+.'/ *****************************************************************'

deluser()
begin

int cont,ij;
char deletename[8];
/* read deletename from superuser */
for (cont = 1;nocof_users-l;cont++)

if (stringcmp(usertable [cont] .usemname ,deletename))
i = cont;

for (cont = i;no-ofusers-2;cont++)
/* shift the table down over the user's id */

begin
for (j - 0;7;j++)
begin

usertable [cont] .username [j ]=
usertable[cont+l] .userrmme[j];

usertable [cont] .password [j] =
usertable [cont+l] .password [j];

end
end

noofusers -= 1;
end

E-22

-A7

....... . ".................. ....... ,.. , ...........
. . . , + • . . , . . . : . ° A.



.%.

1* Date: 9 September 1983 *
1* Version: 1.0 *

1* Name: users-crUline *
1* Module Nuber: 1.2.3.3.1A *
1* Function: Lists the users that are logged into the *

1* system and the terminals they are using *

/* Calling Modules: help-uyser *
1* Modules Called: trarianitjiessage *

.. -Global Variables Used: noports, userbocks, ESSIZE *
* lbal Variables Changed: none *

/* *1

Author: Paul E. Cruser */
* Systen: VAX 11/78, VMS 0/S and UNIX /S: testing only*/

1, *1

user./ N-aline (0
begin
int duke,i;
char terminalMESSIZE - 10];

for (duke - 0;noports -1;duke++)
if (userbiocks[duke] .loggedon)

begin
for Ui - 0; 7;i1++)
message[i] - userblocks [duke] .usernm[i];

for Ci - 0;MESSIZE - 10;i++I)
message[i+7 - teminal[i];

switch (duke)
begin

case 0: {message[4ESSIZE-2] = "01; break;
case 1: (message [IESSIZE-2] - "l"; break;
case 2: {message [MESSIZE-2] = "2"; break;I
case 3: {message[MESSIZE-2] = "3"; break;

end
* message [MESSIZE-l] - "\n";

naletransmitge(message);
end

46* end

/*E-23

/. */

. . user *~i- 0 . . . ..



S,... .. ..DEVIES..AVAIABE

1* Date: 9 September 1983*
1 Version: 1.0

.Name: devicesavailable
Module Number: 1.2.3.3.lB 1 B

/* Function: To list the devices that are online */

Calling Modules: help_user */
Modules Called: trwasni.t_pmssage */,:-1* */

/* G1 loba Variables Used: devicetable, MESSIZE */
/* Glcbal Variables Changed: none */

Author: Paul E. Cruser */
1* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */,.:1* *1

devices_available()
begin

/* will be written later */
/* it will be the same as
/* userscn_line in structure */

end

%.

E-24

-........................................



- .-...- -S .

Dae etebr18

Mdte 9Number 198.3.1.2

1* Function: To build a message to be sent to the user ~
by using a integer code sent in to indicate *
what message is needed. *

/* Calling Modules: loginuser, logout-user, help-..user *
Modules Called: transmitjnessage *

1* Global Variables used: message, MESSIZE *
1* Global Variables Chianged: message *

Author: Paul E. Cruser
1* System: VAX 11/780, VM Q/S and UNIX O/S: testing only *

buildjnessage (coded)
it coded;

char code0 [MESSIZE] ,codel [MESSIZE] ,code2 [MESSIZE]I code3 [ZESSIZE],
code4 [MESSIZE] ,code5 [MESSIZE] ,code6 [i4SSIZE] ,code7 [MESSIZE],
code8[NESSIZE] ,code9[NESSIZE] ,codel0[MESSIZE];
strcpy(code~o,"No help is available for that commnand Nn");
strcpy(codel ,"Format: RUN FILENAM (executable file) \n");
strcpy(code2,"Format: LIST FILENAME \n");
strcpy(code3 ,"Format: PRINT FILENAME (nonexecutable) \n");
strcWy(code4,"OFormat: DEL FILENAM \")
strcpy (code5,*Format: DIR \n");
strcpy(code6 ,"USEqAME: \n");
strcpy(code7 , "PASSWM1: \n");
strcpy(code8,. "Logged out...n")
strcpy(code9,.Log-in ceuplete... \"
strcpy(codel0,"Processing of jet comuplete...\n)
switch (coded)
begin

case 0: fstrcpy(xuessagepcodeO); break;*)
case 1: {strcpy(message,codel); break;}
case 2: fstrcpy(message~code2); break;
case 3: {strcpy(messagercode3); break;
case 4: fstrcpy(messagejcode4); break;
case 5: (strcpy(message,,code5); break;
case 6: {strcpy(umssagepcode6); break;
case 7: fstrcpy(message,code7); break;J
case 8: {strcpy(message,co~de8); break;

E-25



cas 9: stcynsac ) brak

case 1:{ strcp(message,code9); break;
default: ferror(6); return(0);

end
trananit-.jssage (message);
return(l);

Vend

E-2



1m * BUILD_PCB "

• 1 /* Date: 13 September 1983 *1
"1I* Version: 1.0 *1

1 I* Name: build_pcb */
Module Nmber: 1.2.3.5o2.2 */

/* Function: To initialize a pcb for a job/process to */
be run or put on a queue *I* *I

Calling Nodules: getfile, systenchange */
1* Modules Called: insert_.pb */1* *

Global Variables Used:pcb[], userblock[], and portno */
Global Variables Changed: pcb[] /

"/* Author: Paul E. Cruser */
1 I* System: VAX 11/780, VMS O/S and UNIX OIS: testing only *//, */

buil&..pcb(jobcode)
int jctoode;

/* note: if there is another ready queue added, then another */
/* parameter would be passed in to give the priority */

begin
pcb(portnoj .port-cf,_origin - portno;
pcb[portno].io_status = 1;
if (jobcoden -1)
begin /* if it is a SYS cInd*/

*: pcb[portnol .priority - 0; /* this is where the second */
/* parameter would be used */

pcb[portno] .crrntq = 0; /* but not here, since it */~~/* will always be 0 for SYS *
pcb[portno] .io-status = 0; /* only for SYS: it will */

/* not have to wait for i/o */
/* until time to write to */
/* data base on disk- which */
/* is not being coded in */
/* this version of AMOS */

pcb [portno] .cmandLtype - jobcode;
end
else /* else it is sonething else */
begin
pcb(portno].priority - 1 /* this is where the second */

1/* parameter would be used, */
pcb(portnol .oCurrentq - 1; /* as well as here

--- .*pcb [portnol .ocmmndtype = jobcode 1

E-27



i - . .,'... . .

end
*"'.-. ' userblocks[portno] .jobrunning = 1; /* set jobrunning to 1, */

/* so that port will not */
/* be checked in the poll */
/* routine */

insert, .pcb 0;
end

¢E--

.

p..

'.

57; E-28

- A' iI. :22°: ...



1.- - * *1
/* GET_ ,MD....L:E *

1 /* Date: 13 September 198 *
'""" /* Version: 1.0 */

.I* Name: get_command_line *1
/* Module Number: 1.2.2.2
1* Function: To read in a line from the user's port */,.* */

Calling Modules: p-commancdline, login-user *1
1 * Modules Called: getcharo, inpO */1 * *1
/* Global Variables Used: comiandline, ports*/, portno
"1 * Global Variables Changed: commancLline *1/* *1

Author: Paul E. Cruser *1
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only *//* *

a_ /**. *************************************************************/

get....cm ndline
begin
int q;

q = 0;
while ((q<31) &&l(ccmmand-line[q = getcharo) I= 'Vi'))
begin

q - q + 1; /*read in the command line*/
while ((inp(ports[portno].statport) &

ports[portno] .recvbit) = 0);
end

/* note: getchar will not be the library routine *1
/ 1* it will have to worry about what port to */
/* receive the response. The getchar routine */
/* will be replaced by inp(portaddress), *

where portaddress is taken from the ports */
table.*

""... if (q - 31) command-llne [31] - '\nZ;
/* make sure there is a carriage return */

return(l);
end

E-29

2-- 'e'Z.



. *.-• , *1 .. . .

/* CHECKUSER */1* ,
I* Date: 13 September 19e3 *
/* Version: 1.0I* *1/

Nae : checkuser *I
/* Module Numer: 1.2.3.1.1.3
..1* Function: To see if the user is logged onto the system *I
1 * The value 1 is returned if not else 0' - /* *1

Calling Modules: login_user *1
S. /* lModules Called: stringcmp *I* *1

1 /* Global Variables Used: usertable[]l, noports */
-* Global Variables Changed: none *I

Author: Paul E. Cruser */
/* System: VAX 11/780, V O/S and UNIX O/S: testing only *//* *1

checkuser (tmm,pwd)
charin [ um[ 8,wd [ 8;
begin
int nocounters;

* no - 1; /* flag to indicate if username was found */
counters - 0; /* step counter for the usertable */
while ((no) && (counters < noports))

-'S. begin
if (stringcmp(usertable[counters] .usernamerumn))

no - 0;
if (no) counters +- 1;end

if ((no) && (counters < noports))
if (stringmap(usertable [counters .password,pwd))

return(l);
return(0) I

end

oE'3

.'..*2. . . . . ..-.-oj,-.-. -



,4 . . ..

1* Date: 15 Septemiber 1983*
Version: 1.1

1- * */

/* Name: insertpcb */
Module Number: 1.2.3.5.2.1.2.1 *1
Function: To insert a process control block into a

I* queue. The queue is determined by the *I
1 * priority that was set when the pcb was

initialized. *//* */

Calling Modules: buildpcb *
Modules Called: none */

/* *
i /* Global Variables Used: pcb[], system , readyq, iwaitq */.'.., /* Global Variables Changed: systeiq, readyq, iwaitq */

-" /* *1
Author: Paul E. Cruser */

/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */
All

insertpcb 0
begin

if (!pcb[portnol .io-status)
switch (pcb [portno .priority)
begin

case 0:

/* insert into the systemt */

begin
if (systeaq.qount - 0)
begin

/* systemq.start = pcb[portno];
systaq.ending = pcb[portno];
pob [portno] .nextb - pcb [portno]
p.b portnol .pceviousob = pob[portno] ;*/

end /* if */
else
begin

/*pcb [portno] .next_d = systemq.start;
p'b portno] .previouscb = systemq.ending.nextcb;
systemq.ending.next-.pb = pcb[portno];
systmq.ending = pob [portno];
systemq.start.previous-b = system. ending;*/

end /* else*/
systemq.qcount 4= 1;
break;

E-31



end /* caseO*0

~ case 1:

'--~ 1* insert into the readyIg *

begin
if (readylq.qoout= 0)
begin

/*redylq.start =pcb~portno];

readylq.ending =pcb[portnol;
pdc (portno] .next-db - pcb (portno];
pcb4portno] .prevrious-cd = pdb(portno] ;*/

end /* if *
else
begin

/*pcb~portno] .next.,cb = readylq.start;
pcb~portno] .previous_db = readyq.ending;
readylq.ending.next_cb pcb[portnol;
readylq.ending = pcb (portno];
readylq.start.previous_cb = readylq.ending;*/

end /* else */
readylq.cunt, *= 1;
break;

end /* casel*/

/* case 2: this will be for expansion, ie. *
if another ready queue (ready2q) *

1* were needed and imnplemented *
end 1* switch's begin *

else
begin

1* insert into the iowaitq *

if (iowaitq.qoount = 0)
begin

/*iowjtqjtart - pcb (portno];
icowaitq.ending - pcb[purtnoI;
pcb Eportno] :nex~b= pcb[portno1;1*

en * if

a. else
begin

1* pcb[portno] .nextd, = iomaitq.start;
pcb [portno] .previous.p.d - iowaitq.ending;
iowaitq.ending.nextc = pcb~portno];
iowaitq.ending = pcb~portno];

-lotiowaitq.start.previou-rcb = pcb [portno ; */
end /* else/

E -32



• -. iowaitq.qcount += 1;
?". end /* else*/

*, '.- end /* insert */

, -.

,'

.4

-.

A"

5. E-33

.-- ' - -- ,,, - - -. - - ..5 - -' ? , :-, :- ' , . ? -? . , .?- : , -"



.* ., /, */
SI* PROCESSSCHEDULER

• * Date: 11 October 1983 */
/* Version: 1.1

"* Name: processscheduler
S/* Module Number: 1.2.3.5.2.2
.* Function: TO process the I/O wait queue, get the */
'.' /* get the next ready process by checking */
1/, * the system queue for a process, then if */
-* none check the ready queues. If one
"1' /* of the queues has a ready process then */
1* the process is taken off the queue and
1* executed.

, * Calling Modules: executecommand
"--/* Modules Called: sendfile, write, process iowaitq, */
1 -/* check_readyqs, get.pcb, program_run, */
/* rim..._sysconn, deal locatespace *1

• /* Global Variables Used: portno */
' /* Global Variables Changed: portno */

/* Author: Paul E. Lruser */
1* System: VAX 11/780, VMS 0/S and UNIX 0/S: testing only *//* */

process-scheduler ()
begin
#define comiandtype-error 10 /* code for error received */
int next-process;

process-iowaitqo;
next-process = check-ready-s ;();
switch (nextprocess)
begin
case -1:

return (1) ,

case 0:
begin
getpcb (nextprocess)
run-sys-co.m()
return(1) ;

end

case 1:
/* case 2: */
/* etc... *

begin

E-34

°A.



"ID-80.8 078 DETAILED' DESIGN AiND IMPLEMIENTATION OF Al 3/i
MULTIPROGRAMMING OPERATING SYSTEM..(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.

UNLSIID RKMLE E 3FFTGSE/3-4 FG92 N

E~h~hh~hh~EN
E0h00E00h0002hI



-,m
,u 

1" .

* 
.... %!%

*IU' N Lm

MICROCOPY RESOLUTION TEST CHART
NATIOAL BUREAU OF $TANDARD-1963-A

Ir

-6. %,

- . ." 
• 2" " . .

.* 11.111,, , I• -. , . ,,,=J. .= -,.i" ;'". ',.;1"1'1'11= , "--";",.---.-. .-



ge~c(nexL-Xocess);

cae0: 1 prograun~O ; break;
ca 1:

cas 4: {send..file(portflo); break;
-, as 2: ( end-.file(noports); break;

cae 3: (writ.(portno); break; )
default: {error (cm.. .n&.tyerror) pretun(0)11

end /* switch */
deallocate-.pece (portno);
return (1)

I end
nd

34end

'B-3



%.47L - Uk if - .w - - ..4

" * cB~cK.ADYs */
/* */

/* Date: 14 September 198 *
N Version: 1.0 *1

-4/* */
* ame: check.readyqs
/* Module t~Nber: 1.2.3.5.2.2.2.1 */
1* Fiunction: To check all the ready queues to see if */

there are any processes on them. It checks */
/ * the queues in order of priority and when *1
/* the first nn-empty queue is found its */
/* priority is sent back to the caller. If */
/*all of the queues are empy the value -1 is
/* returned. *//* *

Calling Modules: process-ocheduler *1
/* oges Called: none

Global Variables Used: pob[] , systemq, readylq */
/* Gldbal Variables Ohanged: none *1/. */

Author: Paul E. Crse1* : 1.Cruser *
* System: VAX 11/780, VM9 o/S and UNIX OIS: testing only *I1* *

checkreadyqs
begin

if (systemq.qount > 0)
return(0); /* systuq has at least one process */

else
if (readylq.qwount > 0)

return(l); /* readylq has at least one process *1

/* else *
/* if (ready2q.qwunt > 0) */
,* ireturn(2), */
S etc...

else
return(-) /* all the queues are empty *y

E-36

" *0. -" . -,- ,,. , " , - . . , , " - . .--.. "%" .-



•~w ".". / .~ J F~~- 'J P P. J~'3.~~u. P. *.- .

/ * */

I PE GL..P

/ * *1
1 * Date: 15 September 1983
/* Version: 1.1 */

/~ Name: get-p *
/* Module Nuber: 1.2.3.5.2.2.2 *1
* Fnction: To get the next pb and take it off the
* quue which it is on. The next pcb is the *//* first one on the queue.

/. ./
/* Calling Modules: process.cheduler */

Modules Called: none */

/* Global Variables Used: systemq, readylq, portno */
/* Glcbal Variables Ciiged: systmq, readylq, portno *//* ,/

Author: Pwl E. Cruser */
/* System: VAX 11/780, VMS o/S and UNIX os: testing only *//* */

7cpob (tyrone)
0 tyrone;

bl

struct z~pb tep

begin
c'e 0:
begin

Portno - eystq.tar.port.o._origin;
if (uyse .owunt - 1)

systnq.qoount - 17
4. else

begin
trmp - mystuq.start:
syustq.start - tuW.nex*_cb

twV.jzeviousLcb .reviouscb;

break;
and /* cae 0 */

.. came 1:
9 begin

portno - readylq.yort,_qcigin
if (r edy1q.q9ot - 1)

.. .begin

* 3-37



p readylq.start - 0;
readylq.endirig - 0;
readylq.qoount -11

else

tnup m readyiq.&tart;
readylq.intart = mP-ekb
remdylq.jpcevioumLpd -

S. readylq.qoout -1;

ad!
break;

end /* can1*
end /* witch *

mnd

E-3



.p.,W

* 1* PROCESS-MfAnI *

1* Date: 15 September 1983
1* version: 1.0

* Name: procesajiovaitq *
Nodule Number: 1.2.3.5.2.2.1

1' Ftction: To transfer any prooess on the wait queue *
1*that is done withi/ovwait to a ready quse*

1* Calling Modules: procest-scheduler *
* 1* Modules Called: insert-peb *

/* Gobal Variables Used: iowaitq, noports,, portno,*
GlblVariables Changed: iowaitq *

Author: Paul E. Cruser *
1* System: VAX 11/780, VHS Q/S and UNIX 0/5: testing only *

process.iovaitq
begin
int ittemmortnoi

struct z~pcb ftempy
if (iouaitq.qoumt > 0)
begin

tamp - iowaitq.start;
Vi 0m ;

while (i < noports)
begin

if (temp.io-P.tatus -0)
begin

temportno, - portho;
portno, - te.port.f..origin;
tsmp. rmxt...d.pcevious....d - temp.previousocb;
temp.prwiou....b.rsxt..d - temp.next-b;
iomaitq.cunt - 1;
insert~pb()
portno, - tumiortno;
return (1)j

end /* if*
i 4= 11

end /* while *
return (1)
ad /*if/

end /* pcocasqji,#aitq

0-39



*W.

,. '.. .."/ */
/* CLERLUP

,/* Date: 15 September 1983 *1"> /* Vers~ion: 1.0 *

/* Nmne: cleaU,
Module N mbier: 00 *1

S/* ction: This sLbroutie will delete any process *1
_. from the queue it resides in and end it *
1 /* without finishing. It is not used in this */
/* i~lu~mentation, but can be useful later. *I

Calling Modules: none *1
Modules Called: deallocatt e *I1* */

I* Global Variables Used: pcb[, portno, iowaitq, systemq *1
/* readylq */
/* Global Variables Changed: iowaitq, systemg, readylq, */
/* pcb[] */:1 * *1

Author: Paul E. Cruser *
systm: vAx 11/780, VIE O/S and UNIX OS: testing only *I1/. */

cleajP()
begin

pc [porto] .extcb.pewioq_;b, - pd [portno] .previousd,;
pcb[portno] .previous.cb.,extrzb - pb[portno] .next.db;
deallocate.sace (portno);
witch (pcb [portno] .current.q)
begin

case -1: { iowaitq.qount -- 1 return(l); }
case 0: { systemq.qoount -1; return(l);I}
case 1: { readylq.qwount- 1; return(l)I }

/* case 2: { ready2q.qoount - 1; return(l) } *I
/* etc... */

'I default: return(0)i
end /* witch */

end /* clewup~*

E-40

"44 ' ,' e , ,' , t.,',-,..''-j ' -. ' ,' -', -j ''''''':" -.-. ' ' " -.-.-. ' .. " ..-. ' ..- . .,,.-.-.- ',-.-.-. '



.1 - - -;

I'5
.. .Z

/ Date: 15 September 1983
b /* Version: 1.0 */

/* Mm : rijaom */
Nodule Nuiber: 1.2.3.4.2 0/

Function: Th run the system comand/

/ Calling Modules: procesu-cheduler */
Nodules Called: none */

/0 Gldbal Variables Used: none */
/* Glbal Variables Changed: none */
/* *

/0 Author: Paul E. Cruser /
/* Systm: VAX 13/780, VIE O/S and UNIX o/s: testing only */

begin
/0 1Te system vonde are run in the module systu_ /ge
/* and do not need to be run here. 7iis module will be needed */
/* when the ystu.xAchage will be actually lemnted on the 0/

/* hoo micr sys . */
adreturn ()

B-41

'p " - '. "- - % ' ' ' ' ' ' ' - - ' " " ' ' " " ' " . - - . . . . .



/A ~ * tSilil_.N*/

/*I* Date: 15 September 1983 *
1* Version: 1.0-*. */
.I* Name: pcogrm */
/' Mlokule Number: 1.2.3.5.2.2.3.4
1: * Fwction: This routine will call a Z800 Assembly sub- */

routine that will enable the interrupts and */
- 'start ezction, of the fe pointed to by *

1* pbp's offset address.7. / */
/* Calling Modules: procesgs~cheduler
/* odules Called: amoskenel/* */
/* Global Variables Used: pcb[], portno */
I 1* Global Variables Changed: none */* *
/* Author: Paul E. Cruser
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */I * *1

progracnm 0
begin

if (umocernel (pab [portno] .ffse,..address,
pb [portno] .finaleddress))

return (1)
else

return(0)
end

.E4

,.5 '

E-4

K'

iE-°2

;.. ..-. 2...--,.- -.. : :.,. : '.: :.;.: ..-..-.. -. .; ..* .. .. - -, .' .. - . - . . .. *. .



"1" /* DET.VAr~m-.aw. *11* *
1*Date:l1Sept 1983

/* Version: 1.2 */

* Nm: detvyali&.c=.*
/* Motle Number: 1.2.3 *1
,1< * Function: This module will detrmine the command the user */
1' * is requesting then will call the necessary *
* routines to have the specific command executed.*/

Calling Modules: main
/* Modules Called: log...iruser, stringcmp, loq._ut-user, */
/* help-user, systeachange, usercommand, */
1 * excuteuser-ommand, error *1/4. * *!

Global Variables Used: cmuandtable.:ummnd */
Global Variables Changed: None *1* */

.- /* Author: Ronald K. Miller */
1 /* Systm: VAX 11/780, V I O/S and UNIX O/S: testing only *
1 ,* - -*- **-**** -- * -*** * 1

det.vali4()
begin

char *e,*help,*systnm /* Initialize uomparision string */
bye -=BE;
help = U"l UP,,
Sstem - W5VYSU

if(logjuerO0 1- 2) return(1);
if (stringcmpt (byecmuinctale. immnd))
begin

log..outuser() r
' return (1)i

end
m if (tringc (help, cmnc. table.cmnd))

begin
h.lpjmer o;

"-J. return(1);

if (stringicup(setmomnan&table.cmunnd))
begin

syt-cha)g
return (1)

.E-4



- -v-- T I. 4 .. .a I. I' -. - P .-- .-. - . %-.0 . - a 

if (user-.conznand 0
begin

execute-user-.coznand 0)
return(1);

end

endero~)

44-4



.T " e IV % . : I,- k ,

"- "": l* "1
USE.LMO */

l* *1
1" Date: sept 19M1
/* Version: 1.0l* *1
~I Nme: user-CMnd */
1 * Moixle Number: 1.2.3B */
../* Fnction: This inokde detemines if the cimiand */

requested is a user czrmand. */

1 calling odules: detvalic */
/* Modles Called: stringamp
l* *1
/* Global Variables Used: coand table.omiund, can */
/* Global Variables Changed: and *1

Author: Ronald K. Miller */
*1. System: VAX 11/780, S o/S and UNIX O/S : testing only .1l* *l

user-ocmumand()
chamr *run, *list, *print, Melete,*directory;

/* initialize ccmnparision */
/* strings *run - "NJN';1ist - "LIST"; print - "PRINT";

delete - 'D .L;irectory - "DIR";
if (stringcmp(rungommnd.table.cmiand))
begin

nd- 1; return(1)g / cd-i Implies run coand *end
if (stingcup(li.st, unarxtable.cxtsand))
begin

=d 2; return(l); /*andw2 implies list comunand

if (stringacp (print,cmanor.table.ommnd))
begin

and -3; return(l); * cmd-3 implies print ocumand */
end
if (stringep(deletecomwnd.table.onwd))
begin

cad 4; return(1); /* cmd-4 implies delete cmnmand */
end

.E4 r.:. E-45

• " ' -... , , • -,, ,. -,-. ,, *,. ."% -,....,.--,,-, . .,".,- ,* .- ,- .- ,



if (stringmp (directory, command-table . zmnand))
* begin

and = 5; return(l); /* cmd=5 implies directory ccmnand *
end
return(O); /* return(O) implies not a user ~

1* coummand *
end

E-4



V,~~ -7 %77%r..1

Date: 1 Sept 1983*
1* Version: 1.0

* Nm: stringcqm *
Module Number: 1.2.3A *

1* Function: Determines lexicographaic equality of two *
1* strings. *

1* Calling modules: det-alid-coumnd, usercommand *
1' Modules Called: NOWe*

Glba Vaibe*Ue:Nn
Global variables Usaed: None

Author: Ronald K. Miller
1* System: VAX 11/780, VMS 0/S and UNIX 0/5: testing only *

stringcop(s,t)
char s [IJptfl
begin

int i J;
wile=0 -si+ t[j441)

% 1* Continue while strings are equal *
- 1* Returrx(l) if strings are equal *

return(0)i
end

PO E-47



I"57%.. '""*. .. .. 75 1. 7.

W-.USEaaXWND *
/* */
1 /* Date: 1 Sept 1983 */
/* Version: 1.0 */"5 /* *1

Nme, execue.usecmand */
Module Number: 1.2.3.5 */

.- /* P ction: This module will have the user camiand checked */
"1: /* for validity and if valid will have it */1* ceIte . *

.-1/* Calling Modules: detalid_com */
/* /Modules Called: validate_usercommand, executecomand */1* *1
/* Global Variables Used: None
/* Global Variables Changed: None1* *1
/ . 1* Author: Ronald K. Miller
/* System: VAX 11/780, VM2 O/S and UNIX O/S: testing only *//* */

*" executeuser_ciand 0
begin

if (validate-uwerxcmand 0 )
begin

execute_comn d return (1)
end

." return (0)
end

-48
f ." : ." '- ""5 ". " '' '''' .. .; .. -' ' . .. ":. " - . . '.. .. ' 4- . .,., .,i. ,,. .,_ .; : . ,

%(..4- , - , • . . t , _ : " ' - ' ' ' " ' ' , ' - ' ,
i

'



-T- k A.-

'

'" 1$': * */

1* VALIDATE-.USELCMMAND *1* *1

1 * Date: 1 Sept 1983 *
1 * Version: 1.2 *1
1i * */
1*-N1.s:me: validate_user_mmand *
/* xModule Number: 1.2.3.5.1 */

1 * Function: This module will check to see if the proper */
'" /* file is being requested by the authorized user */
/* and if the file are located on the disk. In */

the case of a RUN ocmmnd this module will */
/* also check to see if the requested file is an */

executable file. */

". /* Calling Modules: execute_user.ocmnd */
Modules Called: chk_.run-ile, chkfilename, *

/* chkLuserame */*, /* *1
Global Variables Used: cmd */

/* Gl~aI Variables Changed: None *//* *1
Author: Ronald K. Miller *1

/* Systum: VAX 11/780, V O/S and UNIX O/S: testing only */

Salidateuseruomd 0)
begin

witch(cmd)
begin

came I:{if(chkfilenmeO & chkuserame0 && chk-ru.fileo)
return (1)

return(O) ul
/* return(l) if all three are valid */
/* otherwise will return(0) *

case 2: cae 4: {f(chkfilename0 && chktusergm=e())
return(l);

return (0) ;
case 3: {if(chikfilenmeO && chkjuserameO &0

chk_xunxfile0) return(1)i
return(0) 1}

ce 5: return (1)1 /* directory o ernd automatically valid */
default: return (0)
end

aid

U" E-49



% .....- - i

.'* %

'"1* OIK'ILNAM */
/* *1

:"1l* - sDate ept 1983 "/: * Version: 1.01:. * *1
~1 Nme.: ch-fileme */
/* Module Nmbier: 1.2.3.5.1.1.1 */
/* Function: This module will check to see if the file
/* bing requested is located on the disk. */,,/* */
/* Calling Moduls: vliate.uer.aind */
* modules Calle: ozen , error, close *

/* Global Variables Used: -e.nd.table.iparameterl *I
1 I* Global Variables (hanged: No *

/* Author: Ronald K. Miller
1. System: VAX 11/780. VM9 O/S and UNIX OIS: testing only */

* chk-f lmwne
begin

if(fd-(open(cmm~nd.table.parueterl ,0)) -- ER)
begin

error(2)i /* if file can not be open the */
return(O)y /* file is not on the disk */

end
else
begin

getj ernme (fd)
cloe(fd); /* elm close the file and return(1) */
retur, (1)

i .% ; "

end

E-50

*%%%&

* ,, ,:,,,,,..-:, . -.. ...--. ..- '.-." -.--.-.--., .-. .,.,--.,,.. ., , , ...-.%.-..%. -,.. **. -. *. .-. .



I Date 5 SeL 198 *3
/* Date: 5 Sert 1953 *
1/* version: 1.0

1" MuNo: cnm-maile */
/* Module umber: 1.2.3.5.1.1.3
/* ~mFction: This module is to detemine if the file being */

requested is an executable file. Wll
• /* return(1) if so otherwise will return(O). */* */

., /* Calling Modules: validateserjxmmn *I
1" Modules Called: strngap */

/* Glb~al Variables Used: cotmmnd-table.parameterl */
/ 1* Global Variables Changed: None */

4~ /* */
1* Author: Ronald K. Miller */
I* System: VAX 11/780, VMS O/S and UNIX OS: testing only */

chk-rnwf il1)

dr. temp[3J ,*cm;
int ij,J

,p. i-J-0,
" OOm - OCIM"

while(com.ndtable.partmeterl[i++] I- .)
/* Find the extension part of the */

while (j < 3) /* filenm *
temp[J++] - omaniLtable.parameterl I i++] i

/* Place the extension in a
iff(stringcap(com,tmp)) /* temporary buffer for coarsion */
begin

if(camd - 3) error(ll)l /* error(ll) means an executable */
return(l)i /* file is trying to be ran

iff(cm -- 1) error(10) 1* error(10) mans a noezecutable */
return(0)j /* file is trying to be printed */

4and

E-51

i~iiI

r.,b.4.-. ..,4. .- .-.,'... -. *4*,,*4.-:4 .,-,4d.4'.'.-. *..........-.,............. ....,.'... ',. .. ......- . ....... .J'



/. ,/1* Q~M-USEPJWM *

/* Date: 5 Sept 1983
1 * Version: 1.01* *1
/* Name: chk_umerjm *
* Module Number: 1.2.3.5.1.1.2
• /* Function: This module will check to make sure that the */
IC proper user is requesting their own file. C/

I calling Modules: validate_user_muwnd */
I:/* Modules Called: stringmp *

/* Gldcal Variables Used: userblocks [portno] .userm, */
I* fileusername */
I* Global Variables Owiged: None *1

Author: Ronald K. Miller
I* SystwA: VAX 13/780, VM o/S and UNIX o0s: testing only *I
IC*CCC*--*C*C*CC***CC **CCCCCCCCCCC ******C*CC** **

chk_umer-jme 0

if (stringcp (file-username,userblocks [portno] .usern))
,', return (1)

error (3) i
return(0);

.,,, end

"B-52

-. 7,



S* /* _,..GETUSER *1/* */
/* Date: 5 sept 1983 */
1" version: 1.0 *1I* *1
/ 1* Nam: get.sernae *
/* Module Number: 1.2.3.5.1.1.1.2
I/ Fwuction: This module wi1 get the user name of the file */
* being requested. This is in order to check */
* for user authority in a later module.

'1 * Calling odules: chk.jilme *I
1* Mxules Called: None */

/* Glcbal Variables Used: opened-files, file-username, *1
/* BEX3nN R, USER *1
'. /* Gldal Variables Changed: filjuermne */

/* Author: Ronald K. Miller */
/* System: VAX 11/780, VMS O/S and UNIX O/S: testing only */

0eginget.username (fd)

whlle(j < USER+1)
file-userme[i++] - cnedfiles[fdj++1;

return;
end

.~B5

i

~E.-53

*1''''', ''":' , .. .-.. -" .-.. ';' ':- . '-,--: :s -'--,,.''.'.-.-,:.:. -..- -.- -:.-.- , . ...



- --e - 4. b. - b- - F

1* Date: 6Septl983 *
1* Version: 1.3

Name: open *
N* odule Number: 1.2.3.5,1.1.1.1

* . 1* Function: This module cpens a file from disk and then *
1* allows for reading from and writing to the
1* particular file.

1* Calling Modules: chkjfilnme *
N* odules Called: get~.di rectory *

1*Global variables Used: file-usernm, openedjfiles, name,*/
NMMIE, ELEFIG'iE HJFSIZE, *

* 1* deector, deLtrack, delsemctor *
1* Global Variables Changed: filemername, openedjfile *

1* Author: Ronald K. Miller *
1* System: VAX 13/780, VMS CVS and UNIX O/S: testing only *

open (file,code)
char fileD;
int code;

.4 begin
(1 int ipjskolocation;

char buffer [EUPSIZE] [5 PLE1GMJ
dtrack-DIRM3M;dnector-DIntSK'1CR;
finished - 0;
while (Ifinished)
begin

read (dtrack,dsector ,buffer);
/* Rads in a block of the directory *
/* and places it into buffer.

while MC < BJFLEmG76) && (bufferli,0J I- El'))
/* Check of end of buffer or the end *
/* of the directory.

begin
ko0;
while (k < NIESIZE)
begin

nmek]ubzffer[ij [kJ;/* Places each filename into name*/
k1; * for -cmprision. *

.~ end
if (stringcmp (name file)) /* If the names are the ame *

E-5



begin /* Place into openedfile */
jimo0 /* ard then return(l). *
del-track = &rack; /* Track and sector of where */
de sector - dsector; /* the filename is located

I* in the directory. */
while (j < BJPSIZE)
begin

cne iles[location] [j] =buffer[i] [J];J++;
end
location++;
return(location - 1)

end
i++;

end
if (i - BJMW M)

I* If true means the entire directory *1
begin /* has not be read. Therefore another */deector++; /* sector needs to be read in. If

/* the last sector on the track has been */
/* need to go to next track and sector 0*1

if (dector > NUW E)
begin
&rack++j
deector = 0

end
end
else return(-l)1 /* return(-l) means reached end of the */

/* directory and no file was found. */
," end

'E5
4,

.4, :

I -4 * " ! o , . . # % . . . . . , < . . ' ' ' ' i i ; . . " . " " . . ' - ' ' ' . v - - v v . . . . . • . . . . . . . .. .



I* Date: 6 Sept 1983 ** Versio: 1.5*1,.: * */

.1/* Name: error */
* ~Module Number: 1.2.3.5.1.1.1.3

Function: This module will determine error received and */
."/* will build the necessary error message. *//. */

Calling Modules: det,._vaiid.o , d*ikflenme, */
1* chk_pserjnme, execute.mmand, *I

Modules Called: trmUtmessage *1

Gloal Variables Used: message, MESSIZE

*. .. /* Global Variables Changed: message *I

* System: VAX 11/780, VM 01S and UNIX 01S: testing only

error(type)
int. type;
begin

switch (type)
11/. begin

case 1: { strcpy(mesuage,

break;)
case 2: { strcp(mssage,,-.'.- VALID FI fli)J

;: . break;)
case 3: strcpy(message,

'INVALID uSI MTIM ING TO REMVE ILE\,n');
break;)

case 4: strCp(message,
'I'.EGAL UsIR \'),
break;)

case 5: { strcp(message,
93UI IMZED US \n");
break; I

case 6: { strcpy(message,
.UNROOIZEAB OE - WYAGAIN n'-);
breaki)

case 7: { strcpw(message,
"NOT EN GH MD SPACE TO EXECUTE NO \n');
break;)

>. *" case 8: strcpy(mesuage,

.,q*/, -. ,-56



-i- * .
L 

- * . - . .

"PROGRAM TOO LAIRE FOR ,ENDR,: "break;}

case 9: { strcpy(message,
'PROCESS ABD, DID NOT .. o \n")

cas i:{break;}
cas 10:{ strcp(message,

-, 'HEc~crABZZ FILE, UNABLE TO RNN
break;)

case 1:{ strcp(mesge,
3uTa71"ABLE FILE, UNABLE T PRINT
break;}

default: return(O);
end
trammistwm ge (message)1
return(O);

end

"i E-5-7

.4. . " '' ' , ' " .," '" " - '" -". :". "" - - . " ' " -

-I. " , i c , 
°

o - " "? . . p . . " . . ¢ . ,. ' . ..



'.,

"'"'" /* */
/* I A9"T~S SA'T */

.. * *1
1* Date: 7 Sept 1983

,-'. I Version: 1.0 *I
..: * *1

1. m: trumapi i i /
Mo e Number: 1.2.3.1.2.1

• /* Fniction: This module is to traait any message */
/* received to the correct user. */I* *1
/* Calling Modules: error, lutildcmessage */

Modu*les Called: None */* */

/* Gldal Variables Used: None */
I* Gldul Variables waxjed: Nowe *1 * */
1 /* Author: Ronald K. Miller *1
1* System: VAX 11/780, VMS O/S and UNIX OIS: testing only *I

I traunitjmsu ge (string)
char string[],

begin
int ii

*~1 i-op
do begin

while ((inp(ports[portnol.statport) &
ports[portnol.sendbit) - 0);

* outp(ports[portno) .dutaport,stringliJ) pend
-.. while (string[i++ I- 'I\n')l

return;

Na.

'-

E-58

" " Z'.'% " ., '.-'..'% %- -' ", ", ". . ' ". "-% "" ". " '' *' C- . '.' ,- ... .- - -



7. 7,

•.. - " i

* RE *.. . * */
•* Date: 7 Sept 1983
,* Version: 1.2

hS /* Name: read
1* Module Number: 1.2.3.5.2.1.3

.*%, /* Function: To read a sector from the disk when given the */
1.' /* track number and sector number to read.V." /* */

.,... /* Calling Modules: open *1
-1-7/* Modules Called: None *1

/* */
1 * Global Variables Used: None */

Global Variables Changed: None */

Author: Ronald K. Miller */
_ /* System: VAX 11/780, V I O/S and UNIX O/S: testing only *//* *

read (track,sector, inbuf)
int tracksector;
char inbuf[BJFSIZE] [BJFLENMGI;

begin
int k,ij;
char c;
i =j =k =0;
while (k < BT..SIZE)"' begin

while ((inp(DISKSTAT) & DISM) -- 0);
c W inp(DISKVOW);
inbuf[i] [j] - c;J++;
if (c - BOP) finished- 1; /* When EOF reached the entire */
if (j "- UFLh.M) /* file has been read in. *
begin

i++; j - 0;
end
k+;j

end
return;

end

L'E
I_,.

+- '. 5*k " *9% % m."% % " o "+% ,"- •"-"-'.
,., ., -,,:. , +, ,+ . ,, . . , - •, . . . . , . ' . ' ', '. . . + . . . , .- . " - . . - . . . .. - . . . -. . . . + . -

I + | : , , ,, • r| + . .; td . ) . • - .. ,. m~ . - i , o ,.y--. -. o .



p

--.

" /* BUILDPARSTABLE *//* */
I* Date: 7 Sept 1983
S/* Version: 1.4I* *1
,* Name: build_parse_table
m/ Module Number: 1.2.2.3
/* Function: This module will break the ommand line into */
1. /* its different parameters. */

1/* Calling Modules: pcfuline */
/* Modules Called: None *1,1 * *1
/* Glctal Variables Used: comand-ine, cmmandtable */
1: /* Global Variables (anged: command-table */

1* Author: Ronald K. Miller
,1: * System: VAX 11/780, VM O/S and UNIX O/S: testing only */1 * *1

buildparsetable ()
begin
#define BLNK ' /* defines a blank*/

int ij,k,lm;
i-ij-k =l m=0;
while (1 < OMSIZE)
begin

-. ' nmida.table.command[1] - BLANK;
w lid-table. 'arameterl [I] -

commacndtable.parameter2[l] BLANK;:": 1++;

C. end
while (1 < PARASIZE)
begin

command-table.parameterl [1]-
cmomand.table.parameter2[l] = BLAMK;i1++;

end
while (cammnd..line[i] I- BLANK && c andline[i I \')

cofhanwLtable.commnd[j++ ] - .oiUine[i++];
4 while (commmU ine [i4+] - BLANK);

if(c''aU ne[i] - 'VI')
begin
ciuan Ltable.numparam - 0;
return;

end
while (commancLline[i] I- BLANK && commanc-line[i] I= '\n')

.-- ccuundn&table.parameterl (k++] - omznancline [i++];
,"- "..while (cmmdx.ine[i+] - BLANK);

E-60



if (cmmancline i] l V'
begin

ccuunad..table. numparam 1;
return;

end
while (cmmwand1ine~i] I- BIRL & ccsuand-lineli] I- '\n')

* . ~ccummonctable .parameter2 [m4+] - aiunnxLine [14+]
*I cin IsTtable.mzpDaram 2;

edreturn;

E46

Nk.

Vm



* V ?ii**

EXEa-.4W

1* : ''lU~MMP2,I *1
la, * *1
"" 1" Date: 9 Sept 1983 */
.* Version: 2.1

-] 1* *1
"" /* Nune: execute-mmnd *

Module Nuber: 1.2.3.5.2
../* Pnction: This module will execute a given user ommand *

n* oly after the cmmmd has beend etermined to */
b* be valid./.*-

1 * Calling Modules: executeusera"1mand
Modules Called: get_file, sencfile, process_scheduler */l* *1

1/* Global Variables Used: cmdGlobal Variables Changed: Noe1*-.',-a".gl*d"

"/* Author: Ronald K. Miller
1. System: VAX 11/780, VMS O/S and UNIX O/S: testing only .1.. l * *1

execute-cmand
begin

switch(cmd)
begin

a- case 1:
case 2:
case 3: { if(get.file(atoi(opened.files[f,BB 'RACK]),

atoi(openedjfiles[fd,BBRSECIR])))
processscheduler ); break; )

case 4: { if(get_file(de!_track,de!_sector))
process-schedulerO ; break; )

* - case 5: { if (ge_file(DIR NK,DIRSBMX)R))
processscheduler(C); break; }

default: { error(6);break; }
end
return;

end

.E-4

'a." ",..

a...,-

,.., E-62

C! , ,'0 ,, 4',. ,, , ,, .,,..' .v'.. -... . .--... . . .. . . .- - --. , - -. .

'a : c - , " < ,- . ,,- . t 'i , * . ' . ., , , ., ' , ' . .



ft.

/* (;GE-_nLE *
SDate: 9 Sept 198

" * Version: 1.2.. * */
• * Name: get-file */
/* Module Number: 1.2.3.5.2.1
1* Function: This module preform all the necessary *1
S/* functions to run an executable file.

4', /* Calling Modules: execute-command, buil&..pcb */
S/ Modules Called: read, chipace *//* */

Global Variables Used: openedcfiles, BBDSIZE, size, *
I* beginaddress, encLaddress *I

Global Variables Changed: begin-address, encl-address */
/* .,*/

/* Author: Ronald K. Miller
/* Systne: VAX 11/780, VMS O/S and UNIX O/S: testing only */
/* *

get_filetrack,sector)
Sbint trackrsector;

begin
*ft int i,j;

char charsize;
fcharsize - iened-Iles[fd,BGSIZE];
S" size - atoi (charsize); /* Converting a string to integer */

if (-chk. pace(size)) /* to check if enough space */
begin

error(7) /* Not enough space to put the */
return(0); /* program into main memory */

end
buil&...cb (cnd-l)p
finished = 0;
begirmaddress[nwter-jobsj - meuoryloc;

/* this sets the first location */
/* where the program is being */
/* placed

pcb[portno] .offsetaddress - nmory..loc;
track = opened-files[fd,BWMRAK];
sector = opened.files[fdBEXSE Rj;
while ( Ifinished)
begin

read (track, sector ,nmeory.loc)
.noryloc = memory.loc + BYT.jLSZE;
track - meuory..loc - 21

. o.,?. sector - memory_.loc - 1;
:....-- ~if(track - sector - 0)

E-63

.- -- , , ,., . ... . . . . . . - -, - -



finished - 1;' i ."- if (cmd - 4) /
"finished- i; (d If delete command only need to */

/* read one sector from the disk. */
mmoryloc - memory_loc - 2;

/* Don't want to have the next /
/* track and sector in mmory. *

end..addres [nmberjobs] - minmory....oc - B!TfL..IZE;
/* This sets the last location */
/* where the progrm is begin *1
I* placed. *

pcb[portnol .finaladdres - mmory.loc - B2TE-IZE;
pcb[portno] .io-Atatus - 0;

/* The process is no longer in i/o wait */
number jobs++; /* Total number of jcbs in the system. */

end

.E-6

:4!

E-64

,-.%

a-,..:. % ' .-. , ',.,-J,. ..-.. ' .".. ' .- ':' ' .-.-.. ,'',.,'i ,.' .-. ' .- - . - -. ., ".. . . . .-.-.- . ,-% s".. . ..."
"4- ea Y Me', 'w'l '' ',"' .' ''* "L . ' ' - ,s ,°- - ,'* . ' S." ' ," " -. " "' . -- " i " r. "''



. . 1 *
1: * aIs c */

... /* *1
., l* Date: 13 Sept 1983
.. 1, Version: 1.2

S/* Nme chk..Ppac *
/* zmodule N er: 1.2.3.5.2.1.1
*Fu* nction: This module will determine if there is enough */
"-1* upce in main mory to place the incomin *

program. */

'1 /* Calling Modules: getfile *1
Modules Called: sort *1 * */

*-' /* Global Variables Used: size, begi t _adres, &end-address, */
ICorder, nmberjobs, BAS-ADERESS, *, T.._DImESS */
IC / Global Variables Changed: one *1

./ Author: Ronald K. Miller I
I* System: VAX 11/780, VM9 CVS and MUIX OIS: testing only CI

chk-pm (size)
int size:

begin
int ij,k,l,bottan;N i=J-k=O;
if(niumerjobs>l) /* If the more than one job on the systm *1

sort(order); /* the location must be sorted from largest */
/* to smallest. 7he sorted order is placed C,

/* in the array called order. CI
else if(number-Jobs - 0)

order[O] WCBS;
/* If no jobs on the system order must be */
/* initialized and this make the first value*/
/* equal to P.-ADEREs. */

else
begin

order[0] - 0; I* If only one job order must be inialized. */
order l] - X IJCBS;

end
i - order[j];bottom - BAE_-ADEM;/* bottom is use to find how much free

I* space is located between jobs.
while(k < number.jobs+l)

* 4 - ~ begin
[: .K. if (size <- (begin-addressli]-bottan))

E-65



begin ot;, ..-. o~i_,aryl - bott
return(l);
re4.ll ; /* Make memory..oc equal to the last entry */

/* between jobs and then return(l). */',',a n d
if (k - 0)

I begin
error()
return (0) 1

bottm - enc.addrinu e I;
/* Move bottam to the last location of the */
/* next j. */

i - order[j++];
k4-

end
error (7)
return(O);

end

.*E-6

i .4

* S 5



0e

/* S */
/* *
1. Date: 13 Sept 1983 */
/* Version: 1.1 */

/1* Nme: sort */
/* Nodule Nmer: 1.2.3.5.2.1.1.1

Function: This module will sort the first location of */
each job in memory and place the indicies *1

/* values in the array called order.

/* Calling Modes: chk.ace*
Modules Called: None */

/* Global Variables Used: order, begin-address, nurier.obs */
Global Variables Changed: order *//* *

/* Author: Ronald K. Miller *1
I* System: VAX 13/780, VMS OS and UNIX O/S: testing only *I

sort (order)
Int order[]

beginint i, J,k, I, Icest, cotuttp [M JSS]I
i -k -O

count - nurber.jobsi
lowest - 0;
for (l-0nuterjcbs-I :1++)

tunp[l) - begin_addres[l]
/* Place the array of beginning address */
/* into a tenporary array called temp. *1

while (k < numberjobs)
begin

while (j <n ltbe.jobu)
begin

/* Find the lowest mmory location. */
lowest = J

end
order [i++] - lowest;
teap[lowest] - MP_DaWS;

/* Make the smallest location the */
/* largest value possible *1

lcwest - 0 /* Start from the top of the array again*/end

.5 E-67
'.-' '.-'.k-Z-



-. I .sw 0 -

ordsr~k] N 9XCBS; /* Place the TIOPM!EMS in the last *
return; /* row and then return. *

end

E-6



..N /* */

1 * N~JSE InLE *1/* */
•* ate: 14 Sept 1983
.* Version: 1.1 */1" * */

Nsme: .endfile */
'/* MNodule Nuier: 1.2.3.5.2.2.3.1

Function: This module will trananit a file to the user */
or the printer depending on what was requested.*/

/* This file has already been placed into main */
/* n ymo. *//. */

Calling Modules: process-scheduler */
/* Modules Called: None */

I* Global Variables Used: None */
Global Variables Changed: None */

...., /, ,/

S Author: Ronald K. Miller
1* System: VAX 11/780, VM9 (VS and UN=X 0/5: testing only *

sendjfile (portjun)
int portuum

begin
int starti

-5 ' char valuel
start - pcb[portno] .cffsetaddress;

/* Inialize start to the beginning*/
/* address in main mmory. *

.value - inp(start) /* Take the first character fru */
/* memory. */

while( value I- BOP)
begin
while( (inp(ports [portjn] .statport) t

ports [port~jm]n .sendbit) -0);
outp(ports[port-m] .dataport,value);

N value - inp(+start);
end
return;

end

.E-69 .o", . , -. . .. , . "-'"" . . . .- , .. . . , - , S ',



-- /* DALLOTESA *//* *1
"* Date: 7 Oct 1983

,V /* Version: 1.0 */
ae. e ea.1ocatace

Module Number: 1.2.3.5.2.2.3.3 */
1* Function: This module frees the area of min memory that */

1* a om~pleted process was occupying. This is *
I' /* done by shifting the address a raw up and */
'* dcrementing the nmber of jobs on the system. *

" I* Calling Modules: clemL, process_scheduler *I
• /* Modules Called: None *1-" /*

Global Variables Used: portno, begin_address, *I
enc..address *

S1* Global Variables Changed: beginadress, end.address *1

I* Author: Ronald K. Miller
Systm: VAX 11/780, V OIS and UNIX O/S: testing only */

deallocateapace (row)
int row;

begin
int i;
for (i-row m ber-.'.jos-1; i++)

begirL dress[i] - begiAddress [i+l]I
/* Shift the beginning and */
/* ending address up one row *I

enMaddress[i] enLaddress[i+1]i
end

numter_ jdos-;~return;

end

E-70

° • b ..% % " , .• % o" . " - ,' = -
°



-' ° . - i - r.

Appendix F

AMOS Users' Guide

This is the user guide for AMOS. It covers the

procedures to follow for interfacing with the operating

system. The procedures covered are:

1. Log-in

2. Log-off

3. User help

4. System changes

5. User commands4

Log-in

The procedure to log-in consist of sending a carriage
C'

return (<CR>). This can be done by either typing in a line

of text ended by a <CR> or by entering a single <CR>. The

system will prompt the user for a username. This prompt

will be:
- o

USERNAME:

i_

The user must input their username followed with a

<CR>. The system will prompt the user for a password.

F-i



,, -.-..

This prompt will be:

S.

PASSWORD:

The user must input their password followed with a

<CR>. If both username and password are valid, the system

will return the following message:

Log-in complete...

If either the username or password is invalid, the

system will return the following message:

ILLEGAL USER

Log-off

For the user to terminate interaction with the

operating system, the user must log-out. The following

message must be typed by the user to successfully log-out:

BYE<CR>

F-2



"N" The system will respond with the following message:

Logged out...

User Help

The user can ask for system or command information.

The format for the help command is:

HELP 'subject'<CR>

The 'subject' for system information can be either

USERS or DEVS. The 'subject' for command information can

be one of the following:

*RUN

LIST

PRINT
;...

DEL

DIR

For the system information the operating system will

return the users on-line for USERS or the devices on-line

for DEVS. For the command information the operating

system will return the following for the respective

S ."commands:

F-3
P, "
.5Q~



.. 77.

Format: RUN FILENAME (executable file)

Format: LIST FILENAME

Format: PRINT FILENAME (nonexecutable)

Format: DEL FILENAME

Format: DIR

,'

If the 'subject' cannot be matched with the available

information, the system will respond with the following

message:

No help is available for that command

System Changes

'V. To reconfigure the system the user must be logged-in

Sunder the 'Superuser' username. The current permissable

changes are adding a username and deleting a username.

The following is the forat for the two system changes

command:

SYS ADDUSER<CR>

SYS DELUSER<CR>

.. F-

PF-

ToW'.' .~ reonigreth syte the usrms eogdi



: In each case the system will prompt the 'Superuser'

for the desired username. This prompt will consist of:

USERNAME:

-The 'Superuser' must then input the username.

User Commands

The user commands are listed in the Help User section

of this appendix. The following is the required format

for each command:

0RUN 'filename'<CR>

., LIST 'filename'<CR>

*PRINT 'filename'<CR>

DEL 'filename'<CR>

DIR<CR>

The 'filename' for the RUN command must be an

executable file. The 'filename' for the PRINT command

must be a nonexecutable file.

If 'filename' is not located in secondary memory, the

*system will respond with the following message:

F-5
4%



- o

"- INVALID FILENAME

If 'filename' for the RUN command is not an

executable file the system will respond with the following

message:

14

NONEXECUTABLE FILE UNABLE TO RUN

If 'filename' for the PRINT command is an executable

* file the system will respond with the following message:

EXECUTABLE FILE UNABLE TO PRINT

If the username of the file being accessed isn't the

same as the user's username, the system will respond with

the following message:

INVALID USER FOR FILE

If all the above is valid but there isn't enough

space in main memory for execution of the job, the system

will respond with the following message:

'p

NOT ENOUGH MEMORY SPACE TO EXECUTE NOW

F-

I F-6

- -; .?.SS-\%~ -Q.2 K ~~: ~a..* - .. -



If the job is too large for all of main memory, the

system will respond with the following message:

P.. PROGRAM TOO LARGE FOR MEMORY

If no errors occur, the command will be executed.

Upon completion of the job's execution, the system will

respond with the following message:

.\4

'. Processing of job complete...

If the job's execution is aborted at any time, the

~ system will respond with the following message:1%

PROCESS ABORTED, DID NOT COMPLETE
-'4,

Other Error Messages

If the user does not input one of the above command

formats, the system will respond with the following

message:

SYNTAX ERROR

If any new commands are added to AMOS, the formats

S... for the new commands must be documented.

F-7



Appendix G

Hierarchical Structure of Design

This appendix presents the overall design in

hierachical form. The hierarchical concept is based on

the leveling of the extended machine concept (Ref. 7:

15-20). The AMOS design can be presented in five levels

that are layered around the "bare machine", or computer.

The following is the five levels of the hierarchical

structure presented:

1. Level 1: Lower level Process Scheduler modules

and any modules directly involved in the bare

machine.

2. Level 2: Memory Management Modules.

3. Level 3: Higher level Process Scheduler modules.

4. Level 4: Device Management Level.

5. Level 5: High Level Operating System Control.

The charts present the design using the hierarchy

chart. The circles with the numbers inside indicate what

level the next module is located or what level the

previous module is located.

G-1



Toc r 
-.... . .

- .. -1 *. 11 .;u-

F>.'

U.o

* .. rom Run rom Determine From Determine

Process Valid Command Valid Command

Run Run Log-in
System User

Program Change

From Determine From Determine From Parse
Valid Command Valid Command ommand

I ine

Log-out Help Poll

Terminal
User User Ports

From Get Fom Execute

File AMOS

Build Initialize

PCB Data Base

Insert PCB Retrieve Initialize
Data Base Global

nto Queue Informatio Variables

Level 1 Lower Level Process Scheduler Modules

G-2

* .... 5-**.. .. ..'..'............ . . ... . -..',' , .5 , .. , ., •, , ', . ,



S- -.. -C, *-

From Run From Run rom Run
Process Process Process

Send File Write File Deallocate

To Port TSecondary Memory
Memory Space

From Execute
Command

Get
.%% File

.. j, ,Check Read

Space Fl
-p-

To Build
SortPCB

- - Memory
"<:'..Locations

S -9

Level 21 Memory Management Modules

G-3



3 ~ *3 1. W- li .
*.7 

1

Parse CommanFoPreLine E xecute

LProcess oGet PCB Run
1/0 WaiProcesse QeQe

ueue ToI , Run

Deet PBTo InsertI ,,,CB Into @
Wat QQueue T eFe

Seco SndyiMer

To Deallocate
Memory Space

Level 31 Higher Level Process Scheduler Modules

G-4

Deee'C4T edFl

q rm /ST1or

4 * q . '

idI ~ V~ ~ ri.,--.



" .". From Execute

Determine
Validi Command

Log-in Log-out User Run System
Usr User .,Change

I Execute
'" I User

To

VaieValidate Validate Validate()

Run List Print Delete File,,, File

Check Check Check
Executable Filename Username

" File

.5:

Level 41 Device Management Level

G-5



- 7 ark~ F-k .. RJ d- ;;~ t ILI eV W. dA. I.A...'~ .'

Execute
AMOS

To Initialize To Determine Valid
Data Base Command

SParse

Command I
-. (Line I

To Poll To Process Command Command
Terminal Scheduler Line Table
Ports

4..

Level 5s High Level Operating System Control

G-6

."4 "@ . " , '_" . ' - .% . ., # ,.



4-,

Vita

Lieutenant Ronald Keith Miller was born on 27

September 1960 in Erie, Pennsylvania. He graduated from

Fairview High School, Fairview, Pennsylvania, in 1978. He

attended The Citadel, The Military College of South

Carolina, Charleston, South Carolina, from which he

received a Bachelor of Science degree with a major in

Mathematics in 1982. He was commisioned upon graduation

and entered the Air Force Institute of Technology in June

1982 as a first assignment.

Permanent Address:

V333 Annette Drive

Goose Creek, S.C. 29445

46.,

VITA-I

a, .. : ,.. .. ':.. ..-. '..' % ; -. "- . ".S ;,." -:.% .'."- "%; % -;



4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EN/8 3D- 14
6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATIONI (If aiplicabL,)

School of Engineering I_ _ __ _ _ __ __ _ _

Or. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

B. NAME OF FUNOING/SPONSORING 1 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If alpilbe)

ft ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (nclude Security Ciasification)

See Box 19
PERSONAL AUTH4OR(S)

-- 'Ronald K. Miller, 2d Lt., USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

MS Thesis I FROM TO _ 1983 December 241
16. SUPPLEMENTARY NOTATION A; dfrRb eleae: I.M.I AFRl 19-7

17. COSATI CODES 18. SUBJECT TERMS (Continue on muwere ifnee sbetajV*u f & 6kF*ijiA1Ci
F. Wright-Paltoson aF Oki 44143

0IELD GROUP SUB. GR. Operating Systems, Multiprogramming, Memory
O 02 Management



UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE

Abstract:

A multiprogramming operating system, designated AFIT

Multiprogramming Operating System (AMOS), for the AFIT Digital

Engineering Laboratory was designed at the detailed level

and fully implemented, except for the assembly language

routines. The requirements were developed in the works of

Yusko, Ross, and Huneycutt.

This thesis effort was done in conjunction with the

effort of Lt. Paul E. Cruser. This effort covers the detailed

design and implementation of the operating system memory

manager, and the specifications for the secondary storage.

It also covers the detailed design and implementation of the

overall operating system.

'C

4tN LS IFE
S. ... .. .q~'- q 'rw . kql 4T.(% '

F
T.*qP .

. "' " . - , , , , - - • . • • .°.- - .- . .- - . ., .. . . - - .- . .. - . . " "



40 4
4b


